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INTRODUCTION

1.1. MOTIVATION OF RESEARCH

The design of marine structures requires knowledge of the forces to

which they are subjected. Gf primary importance are the wave forces

 American Petroleum Institute, 1911!. The evaluation of wave force on

structures has been the subject of research for many years. For slender

members, the Norison formu1a has been widely used.

Let Y denote the wave force per unit length of a vertical cylinder.

According to the Morison formula

Y= CD V V!+CA

in which V and A are respectively the horizontal components of fluid particle

velocity and acceleration at a specific point under consideration at time

t. CD and C< are respectively the drag and inertia coefficients which are

determined experimentally.

To evaluate the fluid particle velocity and acceleration analytically,

the potential theory of fluid flow has been shown to be generally statisfactory

 Kinsman, 1965!. That is, the fluid is assumed to be incompressible, invis-

cid, and its motion irrotational. Under these assumptions, the fluid par-

ticle velocity is the gradient of a potential function which is governed by

the Laplace equation. The fluid motion everywhere below the free surface

can be determined from the solution of the Laplace equation using the

boundary conditions at the free surface and at the bottom of the fluid.

In an open sea, most of the energy of the waves comes from wind. Under

extreme design conditions, the wavesare generated by strong winds such as



hurricanes. These waves are random in nature and therefore require proba-
bilistic descriptions.

It has been shown  Kinsman, 1965! that if the duration of the storm

is long, the sea surface elvation can be reasonably represented by a Gaussian
stationary process.

Utilizing these assumptions on wave characteristics, statistical

properties of the random wave field and wave force were studied analyti-

cally by 8orgman �967, 1972!. There are, however, some important consid-

erations that have been overlooked. These are explained briefly in the

following:

1. It is noted that the potential theory for fluid motion and hence

the Morison formula are applicable everywhere below the free sur-

face. Failure to recognize this has led past researchers  Horgman,

1967, 1972, Pierson and Holmes, 1965! to refrain from evaluating

statistical properties of the wave field and wave force above the

mean water level.

2. Due to fluctuations of the free surface, a fixed point on a

cylinder in the vicinity of the mean water level may rise above

or fall below the water. At instants when the point is above the

free surface, the velocity and acceleration of fluid particles at

the point are zero and the element of the cylinder experiences no

wave force. The tiorison formula given above, which has been the

basis of' derivation of wave force statistics in the past, does not

reflect this phenomenon.

Preliminary studies of the effects of the free surface fluctuations

on the statistical properties of wave field kinematics, pressure, and wave

force were carried out recently  Tung, 1975 a, b!. For the restricted

statistical properties examined therein, and by comparisons made with past



results, it was shown that appreciable differences were observed especially

at and above the mean water level.

1.2. OBJECTIVE AND SCOPE OF RESEARCH

Due to the demonstrated importance of the effects of the free surface

fluctuations phenomenon and the obvious implications on the analysis and

design of marine structures, it is the purpose of this study to extend

the idea developed by Tung �975 a, b! to further derive the probability

density function, mean, variance, skewness, covariance function, and spectrum

of the horizontal components of fluid particle velocity, acceleration, pres-

sure, and wave force.

Numerical results are obtained for mean wind velocity W = 40 miles per

hour  mph!, presented graphically and compared with those obtained pr e-

viously in which the free surface fluctuation phenomenon was ignored.

In this study, the potential theory for fluid motion, carried to the

first order, is used. The sea surface is assumed to be Gaussian and

stationary in time  and homogeneous in space!. For simplicity, waves are

considered to be one-dimensional. However, the ideas underlying the

derivation are general and can be extended to the two-dimensional case.

Also, the waves are assumed to be in deep water, and wave force computa-

tion is based on the Horison formula.

For convenience of presentation,.the description of random surface

waves and those quantities associated with wave field kinematics and pres-

sure which will be repeatedly used in the text is first recapitulated briefly.

2. DESCRIPTION OF RANDOM SEA

The waves formed on the surface of the sea are almost always random.

This is especially true for wind-driven sea waves.

When the storm duration is 'long compared with typical wave periods as



is the case in most circumstances, the surface wave elevation at a specific

point can be adequately regarded as a stationary random process in time.

That is, the statistical properties of the surface wave elevation at the

point are independent of time  Kinsman, 1965!.

Considering the sea surface elevation as a stationary random process,

the statistica] proper ties of the sea surface elevation and the associated

wave field kinematics and pressure are discussed in the following sections.

Materials in sections 2.1 and 2.2 are extracted mainly -from Phil'lips  'I969!.

2.1, DESCRIPTION OF SEA SURFACE ELEVATION

To describe the statistical properties of the random sea surface, con-

sider, for brevity, only one-dimensional waves. Let x be the horizontal

axis in the direction of wave propagation. The z-axis is considered posi-

tive upwards with origin at the mean water level. Denote the random sea

surface elevation at x = 0 by z = q t! in which t is time.

The fundamental measure of the random process z t! is the joint

probab~lity density function f nl.v2 ' ,n ! of nl = rI t !, n2 = Ti t !1' 2'''' m

= n t !. That is, f n,,n2,...,n ! dv>dn2...dn represents the proba-m 1' 2'''' ' m 1 2 '' m

bility that the surface wave elevation at a specified point x = 0 and at

all the times tl, t2, ..., t lies within assigned limits nl,nl + dvl,n2,

n2 + dn2 ..> z >n + dn . The joint probability density function, however,
m m m

is difficult to use without further assumptions and simplifications of the

random process q t!,

If the distribution of the sea surface elevation is considered to con-

sist of contributions arising from relative1y unrelated forces originating

at differ ent times, then the sea surface, considered as the sum of the

statistically independent contributions of these elements, may be assumed

to be Gaussian. Gross observation of the sea appears to confirm this



assumption  Kinsman, 1965!. The Gauss~an assumption of the sea surface

elevation is therefore adopted throughout this research.

Under the Gaussian assumption, the probability law for the process

is completely determined by the mean and covariance function of n  t!.

Since the origin of z is selected at the mean water level, n t! is

a zero mean process and knowledge of its covariance function suffices to

determine the probability law of the process completely.

The covariance function, R  ~!, of the stationary- process, 1i t!, is

R  v! = Ek{n t! - E<n t!!!  n t+T! - E n t+~!!!!
nn

R  T! = E n t!n t+.!!. �.1.1!

It is noted that

2
 o! = E n  t!!

nq
2

2
is the mean square surface elevation or variance 0 of q t! since

n

n t! has zero mean. The quantity v which is the square root of the

variance, is the standard deviation of n t!.

�.1.2!

Associated with the covariance function R {T! is the frequency spectrum
nn

s  n! of 1i t! defined as
nn

S  n! = � R  ~! e di
nn 21' �.1 .3!

in which i = P1 ia the imaginary unit, n, ranging between - tn +

, is the frequency and the integration is over all values of T from

-a tO + ma.

The inverse relation is

R  T!= S  n! e 'dn.
nn

�.le4!

in which E  ! is the expected value of the quantity enclosed in the bracket.

Due to the zero mean property of n t!, the covariance function is simply



In particular,

R  o! = S  n! dn
nn nn

n

 >.1.5!

= a

The cor relation coefficient r  ~! of n t! which appears in subse-
nn

quent derivations, is defined as
2

r  .! = R  .!/<
nn

with

 o! = l.
nn

Much effort on the part of oceanographers and engineers has been

spent on determining the characterization of wind generated wave

spectrum. The underlying theories of wind wave generation and sta-

tistical analysis of wave records are well suamarized in Phillips �969!,

Kinsman �965!, and Pierson and Moskowitz �964! and are therefore not

repeated here.

For engineering applications, the Pierson-Moskowitz-Kitaigorodskii

spectrum is common'ly used. That is, for a fully aroused sea, the one-

sided frequency spectrum of the sea surface elevation, S  n!, is
nn

 Pierson and Moskowitz, 1964!

Sl 4S  n! = � exp -g>  ~! }, n>o
nn

n
Mn

 Z.1.7!

2
in which 81 = 0.81 x 10 , g> = 0.74, W is the mean wind speed and

g is gravitational acceleration. This spectrum, with a cut-off fre-

quency n = 0.8 rad/sec is used for subsequent numerical computation

throughout this study.

so that S  n! can be interpreted as the density of contributions of energy
nn

among all the frequencies present.



2. 2. FOURIER- STIELTJES REPRESENTATION OF

S EA SURFAC E ELEVATION

In dealing with random process, it is often convenient to decompose

the process into Fourier components. This is particularly true when

relations between the statistical properties of wave field and those of

n t! are required. That is, the sea surface elevation may be conceived

as consisting of the sum of the infinite numbers of infinitesimal harmonic

waves.

The Fourier-Stieltjes representation of n t! is given by  Phillips,

1969! n t!= dB n!e
n

in which dB n! is a Gaussian, zero mean, complex random function of

frequency n of component waves and the integration is over all the fre-

quencies present.

The function dB n! has the property that

dB n! = de* -n!

in which "*" denotes the complex conjugate. This is due to the fact

that n t! is real, so that

n t! = n* t!.

That is

n t! = dB n!e

n dB"  n!e'"
dB* -n!e '"

n

The frequency spectrum S  n! of n t! may also be represented in

terms of the Fourier-Stieltjes coefficient dB n! of n t!. That is,

from Eq. �.2.1!



R  ~! = E n* t!n t+T!!

i nl n2!t
E d8* nl!dB n2!! e e

nl n2
Since the process n t! is stationary, the covariance function R  ~!

nn

is a function of ~ only, so that the condition nl = n must be satisfied,

giving
0 if

E dB* nl !dB n2 S  n!dn if n = n = n �.2.2 ~ !

which follows by reference to Eq. �.1.4!.

It is noted that since S  n! is the expected value of the product
nn

of the complex random function dB n! and its complex conjugate, it must

be real and positive for all n. Also, from Eq. �.2.2!, the different

Fourier components are uncorrelated and are therefore statistica'lly

independent due to the Gaussian assumption on n t!  Papoulis, l965!.

2.3. FOURIER-STIELTJES REPRESENTATION OF WAVE

FIELD KINEMATICS AND PRESSURE

Let the fluid be assumed to be incompressible, inviscid, and the

motion irrotational. Following the exposition of Phillips �960!, there

exists a velocity potential p  x,z,t! that satisfies the Laplace equation

operator.

To relate the velocity potential and the surface elevation in a ran-

dom sea, it is convenient to represent the former also in terms of a

Fourier-Stieltjes integral. In deep water, it may be verified that the

Fourier-Stieltjes representation of ~   ! is

v ! x,z,t! = O
2

2 32 82
everywhere below the free surface in which v =   � + � ! is the Laplace

2 2
ax az



 x >z >t ! - dA{n! e>  « � nt! e I k I z �.3.l!

n

which satisfies the Laplace equation and the kinematic boundary condi-

tion that

The quantity dA n! in Eq. �.3.1! is another Gaussian, zero mean, complex

random function and k is the wave-number.

To relate dA n! to dB n!, the nonlinear kinematic boundary condition

of the free surface

~n  ~! -  v ~! v
at ~n h > h

dA n!= - � dB n!.
lkl

Thus

x,z,t! = -i n dB n! ei kx-nt el kl z
�lk

�.3.2!

The dispersive relationship relating frequency n with wave-number

k, of component waves is, to the first order,

n =gk2

which is obtained from the dynamic boundary condition

g.=-  ~! -p  v~!1 2
atn

is used in which v =   ~ ! is the horizontal gradient operator. The argu-
h ax

ments of y  x,z,t! and n t! are dropped here for convenience. Considering

infinitesimal waves, it can be shown that  Phillips, 1960!, to the first

order of approximation,



lo

at the free surface in which v= - � x + � z! is the gradient operator,3
� ax - az

x, z being unit vectors in the x and z directions.

Having the velocity potential p  x,z,t!, the horizontal fluid particle
velocity at point  O,z! is

� 3 3!

f nj dB n! eL ~ e

and the horizontal fluid particle acceleration at point  O,z!, to the
first order, is

g! ~BV z
"dt �,3,4!

nfnJdB n! ejklz -int

The pressure, p z,t!, at point  O,z!, is given by the Bernoulli's
equation

P z,t! = -> a xzt 1 2! 'nx~z~t! + gz! I
at

�.3.5!

in which p is density of water and q x,z,t! is the total fluid particle

the Fourier-Stieltjes representation of p z,t! is, disregarding hydro-

static pressure,

p z,t! = -pg d8 n! ejklze snt �.3.6!

velocity at poi nt  O,z !. To the first order of approxiroation, the non-

linear term q  x,z,t! may be neglected and by using Eqs. �.3.2! and �.3.5!,2



ll

Rye T! = E<Y* z,t!v z,t+~!!.

Thus, from Eq. �.3.3!

 lkl I+Ik21!z inlt ->n2 t+ T!
RVV' T ! I nln2 I E<dB* ni !dB n2!!e e e

n! n2

In view of Eq. �.2.2!, the above equation can be written in terms of the

frequency spectrum S  n! of n t!. That is
zn

RVV <! = n 5  n! e e " dn.
zn

�.3.7!

It is noted that the covariance function of V z,t! and V z,t+ ~ ! is

It is noted here that Eqs. �.3.3!, �.3.4! and �.3.6! hold everywhere
below the free surface.

In subsequent derivations of the statistical properties of wave field

kinematics, pressure and wave force, several of the statistical properties

of V z,t!, A z,t!, P z,t!, and n t ! are required. These properties are
discussed in the following.

From Eqs. �.3.3!, �.3.4!, and �.3.6! it is seen that, to the first

order of approximation, Y z,t!, A z,t!, and p z,t! are individually

Gaussian process since dB n! is Gaussian and statistically independent

of each other for different n. Furthermore the quantities V z,t!,

A z,t!, and P z,t! are jointly Gaussian with themselves as well as with

n t! since, to the first order, they are linearly related to each other

and to q t!.

Also, from Eqs. �.3.3!, �,3,4!, and �.3,6!, since dB n! is zero

mean, V z,t!, A z,t! and p z,t! are zero mean.

The covariance Function of V z,t! and Y z,t+T!, in anticipation that

it is independent of time t, is denoted by RVY T! and is
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indeed independent of t and is an even function of T. Also, when

Ryy�! E y  z,t!! �.3.8!

2
= a

V

in which ay is the variance of y z,t! and ay is its standard deviation.2

Denoting S  n! the fre'quency spectrum of V z,t!,

R  .!e'n'd.S  n! =� 1
VV 2rr �.3.9!

with inverse relation

R � <! = S  n!e 'n'dn �.3.10!

it is seen from Eqs. �.3,7! and �.3.10! that

S  n! = n 5  n!e ~ �.3.»!

The correlation coefficient ryy T! of V z,t! and V z,t+T!

2'yy '! = Ryy '! ~'V

1s

�.3.12!

with

I yy�! 1 ~

In the same manner, it can be verified that the covariance function,

standard deviation, spectrum, and correlation coefficient for A z,t! and

p z,t! are respectively

RAA T! = n S  n! e e dn
n

2

A AA

�.3.13!
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 n! n4 ~  n! 2I k
AA

AA ' AA  A
2

and

Rpp ~! = p g S  n!e I I e dn
nn

�.3. 14!

= Rpp O!2

S  n! = p'g' S  n! e'l"I'

2� ! = R� .! i.,

r A <! = i njnl>  n!e e dn/~ ~AnA nn q A
�.3.15!

with

r A O! = O

and

r  T! = -r  -~!
nA nA

r  ~! = In S  n!eIkIze '" dnya o
ny nQ n V

�. 3. 16!

In addition to these quantities, the cross-correlation coefficients

r A  ~!, r y  T!, and r p T! of q t! and A z,t!, n t! and V z,t!, and

n t! and P z,t! of a given point  O,z! and at time instants t and t + ~,

are required. These quantities may be obtained in much the same way that

rAA ~!, ryy T! ~ and rpp ~! are determined and are therefore merely given
below without further derivations.



with

r V O! =  n] S  n!e~ ~ dn/ r anV nn nV

and

r  r! =-pg S  n!e e dn/cr aIklz -in~
nP nn n P �.3.l7!

with

r �! = -pg S  n!e~ ' dn/a akl z
nP nn nP

and

r p ~! = r p -~!.nP nP

3. STATISTICAL PROPERTIES OF VELOCITY, ACCELERATION,

AND PRESSURE

In this chapter, expressions of the probability density function,

mean, variance, skewness, covariance function, and spectrum of the horizontal

component of fluid particle velocity, acceleration, and pressure, taking

into consideration the free surface fluctuation effects, are derived,

The horizontal velocity, acceleration, and pressure at point  O,z !

at time t given by Eqs. �.3.3!, �.3.4!, and �.3.6! are valid everywhere

below the free surface. It is recognized that due to fluctuations of the

free surface, a point under consideration, especially when it is around

and above the mean water level, may rise above the free surface, in which

case, the quantities under consideration are all equal to zero and the above

equations are no longer valid.

To take into account the free surface fluctuations phenomenon, the

horizontal component of velocity, acceleration, and pressure at point

 O,z! at time t should be written as



A z,t! = A z,t! H n t!-z! �.2!

and

P z,t! = P z,t! H q  t!-z! � 3!

in which H  ! is the Heaviside unit function. That is

0 y<0
H y! =

y>Q

Examination of Eqs. �.l!, �.2!, and �.3! shows that while

V z,t!, A z,t!, and P z,t! are Gaussian, It z,t!, A z,t!, and P z,t!,
being nonlinear functions of these quantities and q t!, are obviously

non-Gaussian. Furthermore, although U z,t!, A z,t!, and P z,t! are zero

mean, V z,t!, and P z,t! are not as will be shown subsequently.

It is the lack of consideration of the free surface fluctuation

phenomenon that is responsible for the errors committed in the past and

the present study seeks to rectify.

Sefore proceeding to derive the statistical properties of Y z,t!,

4 z,t!, and P z,t!, it is noted that these three quantities are similar

in form as shown in Eqs. �.1!, �.2!, and �.3!. This observation

suggests that their respective statistical properties can be deduced from

those of a random process U z,t! such that

U z,t! = U z,t! H n t!-z !

in which U z,t! is stationary in time with zero mean and standard

deviation a and jointly Gaussian with q t!. That is, the joint probability

density function of U z,t! and n t! is
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2ncUo 1r U  ! 2 UUn nU !iU

�.6!

in which r U�! is the cross-correlation coefficient of n t! and U z,t!.

3.1. PROBABILITY LAN OF VELOCITY, ACCELERATION,

ANO PRESSURE

To derive the probability density function of 0 z,t!, the theorem of

tota1 probability is used  Papoulis, 1965!. That is

fO y! = P.[.. .] fU~� ,, y! P.L. .] fo~� , , y! �.1.1!

in which Pr[ ] is the probability of the event enclosed in the bracket,

f ! .! is the probability density function of U and fU~> .! is the
conditional probability density of U given the event M. The arguments

Noting that !i is a zero mean, Gaussian process

�.1.2!Pr[n ' z] = Q b!

Pr[f! < z] = 1-Q b! �.1.3!

in which

Q t ! = Z ~!d~

2 ! ! = � exp -> x !2

and

b = z/a
n

Since, given the event $n<z], the point under consideration is above

the free surface, it is obvious that

�.1.4!fo~��  y! = ~ y!

t and z of !i t! and U z,t!, U z,t! and subsequently the same for V z,t!,

V z,t!, A z,t!, A z,t!, P z,t!, and P z,t! are dropped for convenience.



in which 6  ~ ! is the Dirac delta function.

er f0~ ! 's gi"enU n>z

�.1.5!foI�� y! =

1 b-r ��!y/.�
f- y! = Ll - g b!jb y! + � Z y/a !QU aU U �.1.6!

To show

f-  y!dy = 1
U �.1.7!

it suffices to substitute Eq.�.1.6! into the above equation, giving,

b-r � O!y/>�
I = I.l-g bj}e y !dy + � Z ~! g  " !dy

1-~  O!
n

< -r ~�! � '
= Il-q b!j + Z  � '! Z  "!

2 21-r2  P! a 1-r �!
qU U nU

Noting that

~ � r U O!l nUz  "!
!

I = 1 - g b! + Z M! ds.
z n n

by definition of conditional probability.

Upon substituting Eq. �.5! into Eq. �.1.5!, performing the inte-

gration and using Eqs. �.].1! to �.1.5!, the probability density function

fU  ! of 0 is
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the required result is obtained.

The probability density function f- y! of the horizontal f'luid

particle velocity |t may be obtained from Eq. �.1.6! by replacing aU

and r �! by a� and r �! respectively, givingnU Y nV

b-r Y�!f-, y! = Ll-Q b!j~ y! + Z ~! Q  " ! /.Y
V

�.1.8!

in which oY and r y�! are given by Eqs. �.3.8! and �.3.16!, respectively,nY

Similarly, noting that r A�! = 0,
nA

fg y! = [1 � Q b�< y! + Z ~! Q b! /.
'A A �.1.9!

a being liven by Eq. �.3.13!.

Al so,

b � r p�!y/op
f- y! = [1 - Q b!ja y! + Z   � ! Q  " ! /P  Tp P

�.1.10!

and the probability density functions of V z,t!, A z,t!, and P z,t! approach

the Gaussian distributions f  y! = � Z ~!, f  y! = � Z ~!, and f  y! =1 1
V oy o'y A cfA <A P

� Z ~! of Y, A and P, respectively.
P P

Also, far above the mean water level  z~+ !, f- y!, f- y!, and f- y!

in which o and r p�! are given by Eqs. �.3.14! and �.3.17!, respectively.nP

From Eqs. �.1.8!, �.1.9!, and �.1.10! it is seen that when the

point under consideration is far below the mean water level  z ~ - -!,

the influence of the free surface fluctuation on the statistical proper-

tiess of wave kinematics and pressure diminishes  r y�! ~ 0 r p�! ~ 0!
qY nP
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all approach the Oirac delta function.

Numerical results of f- y!, f�- y!, and f- y! are obtained and compared
p

with f� y!, f  y!, and f  y!, ~espectively. These are shown in Figures

�.1! to �.9! for a mean wind speed W = 40 miles per hour at three

locations z = io , z = 0 and z = -a in which a is computed to be

5.59 feet. The abscissa in these figures are non-dimensionalized.

The discrepancies between f- y! and f  y!, f~ y! and fA y!, and
fp y!, f  y! are clearly seen', the differences being larger for points

above the mean water level  z - o! than below it, As the point under

consideration moves below the mean water level, it is seen that the

The first statistical moment E Ojis in fact the mean, and the variance

a~ is given by2

v =E U j- E Uj
0

in which Efo j is the second statistical moment of U. Also, the skewness

y- of U is
U

y- = E � - E oj! j/v3 3
U

0

in which E U j is the third statistical moment of U.

�.2.2!

In this study, the statistical moments of 0 are obtained by three

probability density functions of V, A, and P approach the p~obability

density functions of V, A, and P, respectively. That 9 and P are skewed

with non-zero mean, are seen in these figures. Also, A is unskewed with

zero mean, albeit non-Gaussian.

3.2. MEAN, VARIANCE, AND SKEWNESS OF

VELOCITY, ACCELERATION, AND PRESSURE

The mean, variance, and skewness of V, 0, and P can be deduced from

the corresponding quantities of D. To find the mean, variance, and skewness

of U, it suffices to determine its first three statistical moments.
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Fig. 3.1 Probability Density Function of Horizontal Component
of Velocity at z=+o = +5.59 ft., Mean Mind Speed = 40 mph
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Fig. 3.3, Probability Density Function of Horizontal Component

of Velocity at z = -a = -5.59 ft., Mean Wind Speed = 40 mph
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Fig. 3.4 Probability Density Function of Horizontal Component
of Acceleration at z = +a = +5.59 ft,, Mean Wind Speed =
40 mph
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Fig. 3.6 Probability Density Function of Horizontal Component

of Acceleration at z = -a = -5.59 ft., Mean Wind Speed =
40 NpI1 n



26

.84
with free surface fluctuations

------- no free surface fluctuations

10

10

3X10

-5. -4. -3. -2. -l. O. 1. 2. 3. 4. 5.

Fig. 3,7 Probability Density Function of Pressure at z = +o
+5.59 ft., Mean Wind Speed = 40 mph
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-5.59 ft., Bean Wind Speed = 40 mph



different methods. That is, they are obtained

1. by means of the probability density function of 0,

2. by method of moment generating function of U, and

3. directly from Eq. �.4!.

METHOD 1.

To obtain the first three statistical moments of U from its

probability density function, note that by. definition of statistical
moments, they are

E UJ! = yJ f- y!dy , j = 1, 2, 3.
C5

Using Eq. �.1.6!
CO '-- r �! y-

e nU aUE OJ! yJZ  ! Z  . ! d
aU

CÃl Z ! 0

~d

!
~U

Z ~! y' Z  ~ - r U o! > ! /b GU nU ! dy dz/a 1-r �!2

in which a = � . Letting
n

= ~- r �! s!/
U

the above equation becomes

E<DJ ! = Z ~! A-Z ~]! d~] d~

in which A., j = 1,2,3, are polynomial functions of r U�! and 	. The
J qU

expressions of' A. are rather lengthy and are therefore not given; the
J

resulting integrations, however, are straightforward and can be performed



30

easily by means of integration by parts giving

Ej:U}=aUrUO Zb

E<0 } =.� Q b! + r �! b Z b!!

�-2 3!

�.2.4!

and

E U j = aU �+r U�!  b -1!! r U�! Z b!. �.2.5!

METWOD 2.

The moment generating function MD s! of D is,

M-� s! = E<e }$U

f0 y!dy

by definition. Substituting Eq. �.1.6! into the above equation

M- s! = 1 - Q b! e " Z ~! Q  U aU 'U

2 2
aU s

= 1-Q b!+e Z x !dz

b - r ��!saU

in which A = ~ - r �!a s. Therefore
o a qU U

1 2 2
UMD s! = 1 � Q b! + e Q b-r U�! aU s!.

The jth statistical moment of U is, by definition,

dJ
M-� s!  

U �.2.6!



which can be performed in a straightforward manner giving the same

results as those obtained by Method l.

METHOD 3.

The first three statistical moments of U may also be obtained directly

from Eq. �.4! without resort t;o the probability density function of 0

or its moment generating function. That is, take the expected value of

both sides of Eq. �.4!

E<U! = E<UH n - z!!.

The above equation can be written as  Papoulis, l965!

E<9l = E~H <-z!E<U <>> �.2.7!

E<U n! = r  o! 0   � "!.
nU U

Eq. �.2.7! can then be written as

E<0! = r  o! a E ~ H n-z!!.
qU U cr

Thequantity E  �" H  n-z!! is easily obtained by integration by parts,
d

n
g 1 ving

E Uj = r U o! aUZ b!,qU

The second statistical moment of 0 can also be found by squaring and

taking the expectation of both sides of Eq. �.4!, giving

E� ! = E<U H n-z!! = E H n-z!E U I<>j2 = 2 � 2
�.2.8!

in which E<U n! is the conditional expectation of the random variable

U given the random variable q. Noting that U and n are jointly Gaussian,

it follows that  Papoulis, 1965!



in which  Papoul is, 1965!

E U ~n! = r U�! a   � ! + a �-r �!!.2 2 q 2 2 2
nU U cr U nU

n

Using this result, Eq. �.2.8! becomes

E U ! = crU  l-r U o!p b! + r U o!E   �" H Ti-z!l!

in which E   � ! H n-z!! can again be obtained by integration by parts.2

|i

After rearranging, Eq. �.2.4! is obtained.

In much the same manner, the third statistical moment of I! can be

derived. Thus

E� 3= E U H n-z!!3 3

3= E H n-z! E U ~n!!

in which  Papoulis, 1965!

�.2.9!

E U'In~ = .�' � l � r,��!!r�U o � ', + .� 0!   � ", ! >.

E Vl.=~y y !  !
ny

!  Jy  P b ! + r y�! bZ b! !

�.2.lO!

�.2.l I !

and

f y ! = g � + r y�!  b � l !! r y�! Z b!. �.2.l2!

mimi 1 arl y

E Al = E A > = o

Substituting the above result into Eq. �.2.9! and integrating by parts,

Eq. �.2.5! is recovered.

The statistical moments of V, A, and P are easily deduced from those

of U. They are
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and

Eil ! = A g b!. �.2.13!

Also

E P! p r p�! Z b!

0!   !!

�.2.14!

�.2.15!

and

E/P ! = op � + r p�!  b ' - 1!! r p�! Z b!.

From Eqs. �.2.10!, �.2.12!, �.2.14!, and �.2.16! it is seen that

V and P have mean value and are skewed, as observed earlier in section

3.1, contrary to opinions commonly held in the past.

From Eqs. �.2.10! to �.2. 16! it can be shown that as the point

under consideration is far removed from the mean water level, all these

a~, a~, and Gp converge to zero as z becomes large, a>, aA, and vp grow

indefinitely with z. It is for this reason that no attempt was made in

the past to evaluate these quantities above the mean water level.

Numerical results of the mean, variance, and skewness are given in

Figures �.10! to �.13! together with those of o>, a>, and ap, as
function of z. The observations made earlier in regard to these quanti-

ties are vividly seen from these figures.

qua~tities approach zero. In this connection, it should be mentioned that

below the mean water level, the quantities E tt' !, E A !, and E P ! approach

o> , aA , and op , respectively. Also, above the mean water level, while2 2 2
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15.
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-10.

-15. Fig. 3.10 Mean and Standard Deviation of Horizontal Component
af Yelocity, Mean Mind Speed = 40 mph



3Sz ft! ec !
2

-15 Fig. 3.11 Mean and Standard Deviation of Horizontal Component of
Acceleration, Mean Wind Speed = 40 mph
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-10 Fig. 3.12 Mean and Standard Deviation of Pressure,
Mean Mind Speed = 40 mph



Fig. 3.13 Skewness of Horizontal Component of Velocity,
Acceleration, and pressure, Mean Wind Speed = 40 mp"
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3. 3. COVAR IANCE AND SPECTRUM OF VELOCITY,

ACCELERATION, AND PRESSURE

To derive the title quantities, those of P are obtained first.

The covariance function of' U z,t! and U z,t+T! is, by definition

COV U z,t!, tJ z,t+ !! = E � z,t! � E tI z,t!!! IJ z,t+~!

-E<U z,t+~!l!! = E� z,t� z,t~!> - E {0 z,t!>

in which the property that- E U z,t!! = E< ! z,t+~!! is used.

�.3.1!

For convenience, let «, Ul ~ and Ul denote n t!, U z,t!, and

U z,t!, respectively and q , U , and tJ denote the corresponding

quantities at  z,t+T!.

Thus

tJ = U H n - z!
1 1 1

U2 = U2 H n2 - z!.

Multiplying these two equations and taking the expected value of

both sides of the resulting product gives

O2 E UlU2 H nl � z! H "2

E H «-z! H n2-z! E U1U

� 3 2!

� 3 3!E<UU ~nn! =m al +C1 2 1 2 U1I "1 "2 U2!nln2 U1U2Inln2

in which mU ~ is the conditional mean of Ul given nl and n2
"1 l«>2

and may be written as

in which E U U ~nln 1 is the conditional expectation of the quantity

U1U2 given the values of nl and n2. Since U<, U2, nl and n2 are zero

mean random variables having joint Gaussian distribution, it can be shown

that  Papoulis, 1965, p. 257!



mU  n n = al vl a2n2

a linear function of nl and n2 in which

al = aU a  r U�! � r  T!r U T!! /a3
�.3.4!

2 U ~  r U'  !  ~!r U�! ! /43

and

� - r   !!
4 2

nU �.3.S!

the quantity r  ~! being the cross-correlation coefficient of n t!
nU

and U z,t+~!. Similarly, it can be shown that the conditional mean

covariance function CU U of U1U2 given nl and n2 isUl"2~nln2

CU U = c  rUU ~! - a �r U�!r U  ! - r  ~! r U�! + r U2 4 2 2

1 2 nln2 U n n ~ ~n n n

 .!!] /~}

and is independent of nl and n2., rUU ~! is the correlation coefficient

ot U z,t! and U z,t+~!.

Substituting these quantities into Eq. �.3.3! and subsequently into

Eq. �.3.2! yields

E UlU2N  1 z!H n2-z!} = CU U E H nl-z!H "2-z!} + 2ala2"1"2[ni'2

"1H nl - z!H "2-z! j +  al a2!Ebln2H nl z!H n2-z! }

The above equation can be written as

mU of U2 given ql and n2 is mU = a2nl + aln2. The conditional
2J"1"2
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E U1U2H iil-z!H ii2 ~U UU ~!L b,b,r  ~!! + 2r U U

b l-r  i.!! r <�! + r U ~! � 2r U�!r  r!r U ~!2 2

bZ b!q  Rn ! + ii n n Rn n

  ~2b
�.3.6!

in which

b - r  .!~
q  n'i

nii b
!

S--  n! = ~ R-- i ! e d< .1 in~
UU Fn UU

The above integra'i can not be carried out in closed form and must be

performed numerically.

In Eq. �.3.6!, it can be shown that since

lim pL b,b,r  ~!! = g b!

The covariance function is then obtained from Eq. �.3.1!. That it

is a function of ~ only and is even is clearly seen, indicating that U

is covariance stationary. Let it be denoted by R-.- ~!.
iiU

The frequency spectrum SOD n! of U can be obtained by taking the

Fourier transform of R<U i!. That is
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and

lim  r U�! + r U T! -2r U�!r  i!r U T!! /�-r  T!! = 0nU nU tiU qp nU

the covariance function R-- .c! approaches the variance o- of the process2
UU U

U as T approaches zero. That is

R-�-  ! = <6 b! + r  O!bZ b!i
UU U nU

When the point under consideration is far below the free surface,

r �! =r  ~! =Oand
nU nU

lim RDO ~! = aU rUU T!

r U '! OnU

whereas far above the free surface

1im R-- I! = 0.
UU

zeta

The covariance function and spectrum of Y,A, and P are obtained by

simply replacing the quantities U, U, by the respective appropriate

counterparts and will not be repeated here.

AN APPROXIMATE REPRESENTATION

To facilitate computation of SUU n!, it is desirable that the

expression for Rg{I ~} be simplified so that the Fourier transo~ in Eq.

�.3.7! may be carried out in closed form,



I-et G r  T!, r U T!, rUU ~!! be used to denote Rop T! as a functionnq ' qU

of the three correlation coefficients indicated. Following Borgman

 l967!, the series representation of G  ~ ! around r  ~! = r  ~! =
qq nU

rUU T! = 0 may be obtained by using the Taylor series expansion,

G r  T!, r U ~!, rUU  !! = G�,0,0!

After some algebra, it may be verified that

G�,0,0! = aU r U�! Z  b! - E  Uj = 0

  !G  i = � U�! b Z b
nn

  ! G ' I0 0 0 = 2<g r U o! bZ b! Q b!

 ,!G  !I = � Q  b!3 2 2

Hy taking only the first two terms of the series  j = l!, the approximate

covariance function ARO< ~! of Ul and U2 is,

AROD ~! = o'~ r   !r U�!b Z  b! + 2r U  !r U�!bZ b! 0 b!

rUU  ! 0  b!k-
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The corresponding approximate spectrum, AS�� n!, is, by taking the
Four i er transform of Eq. �.3.8!,

ASOO n! =   � ! r U�!b Z  b! S  n! +   � !r U�!bZ b! g b!
n

S�U  ! + 0  b! SU   ! �.3.9!

in which S  n! is given by Eq. �.1.3! and
ng

S U n! = ~ a a�r � ~!e'"'dTn H n U nU

and

SUU "! Zn 'U "UU '!2 lnT

CCI
�.3.10!

and those of Borgman �967! at z = 0 and z = a ; below the mean water level,

as the influence of the free surface fluctuation lessens, so do these

differences.

Again, by replacing of the quantities corresponding to 0 and U by their

appropriate counterparts, the approximate covariance function and spectrum

of P, A, and P are obtained.

Numerical results of the exact and approximate covariance functions

and spectrum of P, A, and P are computed and shown in Figures �.14! to

�.31! together with the exact covariance functions and spectra of V, A
and P as obtained by Borgman �967!. The covariance functions are even

functions of ~ and only the portion for which» 0 are shown. Also, the

spectra shown are the one-sided spectra. It is seen that there is good

agreement between the exact and approximate covariance functions and spectra.

Appreciable differences are noted, however, between the present results
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10

0. Fig. 3.23 Spectrum of Horizontal Component of Velocity at z = + v =
n

+5.59 ft., Bean Mind Speed = 40 mph
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Fig. 3.24 Spectrum of Horizontal Component of Velocity at z 0
Mean Mind Speed = 40 mph
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Fig. 3.25 Spectrum of Norizontal Component of Yelocity at z = � o
-5.59 ft., Mean Mind Speed = 40 mph
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Fig. 3.26 Spectrum of Horizontal Component of Acceleration at z = +a =

+5.59 Ft., Hean bfind Speed 40 mph
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Fig. 3.27 Spectrum of Horizontal Component of Acceleration at z = 0 ft,

Nean Mind Speed 40 mph
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Spectrum  ft /sec !2

2.5 .225 .3 .4 .5 .6 .7
Fig. 3.28 Spectrum of Horizontal Component of Acceleration at z = -a =

-5.59 ft., Mean Mind Speed = 40 mph
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Fig. 3.29 Spectrum of pressure at z = + a = +5.59 ft., Nean Wind
Speed = 40 mph
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Spectrum x 10  /b sec/ft !3 2 2
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Fig. 3.30 Spectrum of Pressure at z = 0 ft., Mean Wind Speed = 40 mph
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4. STATISTICAL PROPERTIES OF WAVE FORCE

The purpose of this chapter is to develop expressions of the

probability density function, mean, variance, skewness, covariance function,

and spectrum of wave force in a random wave field, taking into account

the effects of fr ee surface fluctuations pehnomenon.

Following the argument leading to Eqs. �.1!, �.2!, and �.3!, the

wave force P z,t! per unit length of a vertical pile at point  O,z ! and

time t, is, according to the Norison formula

7 z,t! = Y z,t!H n t!-z} = LC V z,t}~V z,t!~+Cg z,t!!H n t!-z!

in which CD = K pD/2, C> = K�prrD /4, D is pile diameter, and K and K�2

are experimental coefficients. The values of D = 1 ft. and K = 0.5,

K� = 1.4, p 1.99 s'Iug/ft are chosen for this study.3

4.1. PROBABILITY LAW OF WAVE FORCE
f

The probability density function f> y} of wave force Y z,t! is, by
the theorem of total probability

f- y! = [1 - g b!]s y! + f-�  y n!dn
z

in which fY   ~,- } is the joint probability density function of randomYq

variables Y z,t! and n t!. For convenience, the arguments of Y z,t!,

Y z,t!, n t!, V z,t!, and A z,t! are all dropped.

To facilitate the determination of fY   , ~ !, it is convenient to
Yn

introduce auxiliary random variables. That is

o D I ~ M M A

Y = n/a
1 n

Y2 = CDVIVI/C
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Thus, Eq. �.1.1! can be written as-

fY y! = Ll-9 b!] b  y! + f  y,y1!dyl.b YOY �.1.2!

The joint probability density function f� �   ~ , ~ ! is the marginal
o 1

density function of f y y   , ~ ! given by
o12

Y Y  y'"1 Y Y Y  y' yl ' y2! 2
o 1 o12

�.1.3!

fy y y  ' ' ' ! is the joint pobabil ity density function of
o12

1
YYY ' 1'2 J VA

o12 n
�.1.4!

J being the Jacobian function and is

�CDCg I v I ! / C< aA2 2

and the arguments v, a, and q in Eq. �.1.4! are to be replaced by

v = sgn y,! ~

' = 'A y y2!

n

in which

2
CHo A/2CDa V

Y , Yl, and Y2 and can be written in terms of the joint probability

density function fVA   ~ , ~ , ! of V, A, and q, That isVATI
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Since V, A, and n are jointly Gaussian and the pairs of random

variables  V, A!, and  A, n! are statistically independent  see Chapter

2!, it may be verified that, after substitution of Eq. �.1.4! into Eq.

�.1.3!,

exp 
-" ~ly21

fy y  y.yl!�
o 1 2 'I-r V�!!V

l 21 gn 2 V 0 y y2! y + �-r V O!!  y-y ! !!dy2. �.1.5!2 2 2

Substituting Eq. �.1.5! into Eq. �.1.1 ! and after rearranging

1 2t2, ~e f b-r � O!!! !=t! !!!!!! ! ! "! ' 1 !y- !!![~
2frn O

 

bar «�! 2ay2
dy2 e Z 2 ~ " ! dy2

o

�.1.6!

To verify that

f-� y!dy = 1, �.1.7!

substitute Eq. �.1.6! into the above integral

1 2 !«e!

I = [I-0 b!] + ' e   e " 2 y2 - y + a!
2!t2« -- 0 fy>

b-r Y O! 2 y2
0  " !dy dy + e" 2 y +y+a!

0tty2
b + r V�! 2ay

C  !dy d»



Since

Z yy! =1
2

it follows that

I = 1-g b! + L b,O,r V�!! > L b,O,-r V�}!

which is equal to unity  Abramowitt, 1968!.

From Eq. �.1.6!, it is seen that when the influence of the free

surface fluctuations diminishes  r ��!M! f- y! approaches
nV r Y

1 2 ~ 1 2
"y2 2 y2

f  y! = q2a e e cosh yy !dy

as derived by Borgman  Borgman, 1967!.

Numerical results of the probability density function f-� y! are
obtained for mean wind speed W = 40 mph and cylinder diameter D = 1 ft.

for z = a , 0, -~ and shown in Figs. �.1!, �.2! and �.3} respectively.n'

4-2. MEAN, VARIANCE, AND SKEWNESS OF WAVE FORCE

The first three statistical moments of Y are derived herein using

three different methods to cross check the results. The variance and

skewness are then deduced from the statistical moments.

METHOD 'I.

Using the probability density function of wave force,

CKI

E Y ! = y f> y!dy, j = 1,2,3.

Performing the integration by parts, the fol'lowing results can be obtained

without difficulty except that the algebra is lengthy for the third statisti-



. 841

10

10

10

3X10 Fig. 4.1 Probability Density Function of Wave Force at
z = + cr = +5.59 ft., Mean Wind Speed = 40 mph, Diameter
of Cylinder = 1 ft.



67

1 0 1

1 0 2

10

3X10 -5. -4. -3, -Z. -1. 0. l. 2. 3. 4. 5.
Fig. 4.2 Probability Density Function of Wave Force at z = 0 ft.,

Mean Wind Speed = 40 mph, Diameter of Cylinder = l ft.
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.15

10

10

3X10 -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.
Fig. 4.3 Probabi1ity Density Function of Wave Force at z = -o

-5.59 ft., Nean Wind Speed = 40 mph, Diameter of Cy!inder = 1 ft.



cal moment.

2 r 1�! 1-r 2�!2

EIYI= Cbsr  " 2   !
~1-.2��!

2 -r y O!b
+ 2L b,o,r y�!! + r y�!bZ b! �Q  ! 1! Q b!  e.2.1!

E Y ! " tCM vA + 3CD ay Q  b! + CD ayr y�! �+r y�!  b -3!!bZ b! �.2.2!

and

'" «�! '-" v�!2

E{'P! =3CC   " " l  !+2L b,0, �!!

2r y�! 1-r V O!
!+30r y O!qy

r y�'!b p 2 4 3

I-r >  ! 0I-r >�! 1-"� o!

r V O!b 6 s r � o!b 2
q  '! !  -gr �!+3! + 2r �!b Z b! Q  " !+15r �!bZ b!qy 2 qy

1-r � O! 1-r , o!

 -r ��! + 3r �! -3!-Sr y�!b Z b!  Zr V�!+3!-r y�!b Z b!!. �.2.3!

-~ y�!b
+ r �!bl b! �Q ~! -'I !

qy
21-r V O!

2r <�!~l-r 	�!+ ny ny

~!r2� I,!

Q b!! + CD y  15 p b! 30L b 0 r V�!!

2r <�! I r<  -0!
 8r �! � 26r �! + 33! +"qy qy !I 211
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METHOD 2.

In this section the moment generating function M~ s! of wave force

Y wi'll be presented from which the statistical moments of wave force may

be deduced. The moment generating function of wave force is

M~ s! = E e !.

�.2.4!
The statistical moments of Y can be obtained from MY s!

d3E Y $ = . M- s! I 0, >=1,2,3
ds~ "

but the algebra involved is quite lengthy.

METHOD 3.

Using this method, the first three statistical moments are derived

without resort to the probability density function or the moment generating

function of wave force.

Taking the expected value of both sides of Eq. �.1!

E Y! = CDE V } V I H n-z! ! CME{A H�!-z! >. �.2."!

The expectation in the second term on the right hand side of Eq.

�.2.5! is zero since r A�! = E/Aj = O. The term
2!A

E V I V f H n-z! I = E H�!-z! E4V I V I ln!! �.2.6!

Using Eq. �.1.6!, it may be shown that
1 2  X2!+ X2 b-s9n�2 " y�! J2al3'pl< ! s! = !-Q b!~ e e Q  !dy2.

22K 22 !-n �!
ny
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in which E V VII'! is the conditional expectation of V!V  given q. It

can be shown that

E V[V!jn! = cry l r V�!!  �+0 ! �g a!-1!-QZ Q!> �.2.7!

in which

�!   � ! / �-r �!!n 2 1/2
ny v ny

from Eq. �.1!

E Y ! = CDE V k n-z!! + 2CDCMEI VIVIAH v-z!! + CME A H n-z!!. �.2.8!

The first expectation on the right hand side of the above equation is

E V k q-z !! = E k n-z ! E V  n!!4 4

in which  Papoulis, 1965!

E{V ln~ = ay � r V�! � + 6Q ~ Q !.
ny

Therefore

E V H n-z!! = oy/r y�! b � + r y�!  b - 3!!Z b! + 3g b!}. �.2.9!

The second term on the right hand side of Eq. �.2.8! vanishes because

�.2.10!V AH n-z!j= E A! E VIVIH n-z!! = 0

Substituting Eq. �.2.7! into Eq. �.2.6! and evaluating the

resulting expected values by integration by parts, the result given by

Eq. �.2 ' 1! is retrieved.

The second statistical moment of Y can be found in a similar manner
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since A is zero mean. The third expectation on the right hand side of

Eq. �.2.8! can be written as

E{A H n-z !! = E{A ! E{H n-z 	2 2

�.2.11!

Substitution of Eqs, �.2.9!, �.2.10!, and �.2.11! into

Eq. �,2.8! yields E{II !as given by Eq. �.2.2!.

Similarly, the third statistical moment can also be obtained from

Eq. �.1!. That is

E{II' > = C>E{A H n-z!k + 3CpCME{V AH n-z!! + 3CpCgE{V VIA H n z!!+CpE{

V  VIH <-z!r.5
�.2.12!

The expectations in the first and second terms on the right hand side of

the above equation are zero because

E{A! = E{A ! = 0 and r A�! = 0.

E{V J V J A H n-z ! ! = E{A >E{V ] V [ H |i-z !! = oAE{ Y! .2 2 2
�.2.13!

The fourth term on the right hand side of Eq. �.2. l2! can be written as

E{V [VIH n-z!j = E{H n-z! E{V JV  fn!!5 5

in which

E v ]v]  q! = v~ g >! ~ !
.i =0

�.2.15!

The expectation in the third term on the right hand side of Eq. �.2.12! is
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75

Fig. 4.5 Skewness of Wave Force, Mean Wind Speed = 40 mph, Diameter
of Cylinder = l ft.
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H n2-z!! - E <P!2
�.3.1!

in which the subscripts F and 2 refer to time instants t and t + ~,

respectively. The first expectation on the right hand side of the

above equation is, utilizing Eq. �.3.6! and noting that r A�! - 0,
T!A

E~A,A H , �.!H , � z!i =l 2 1 2

QA l ~ T ! L b,b,r  z ! ! + r A z 	  /II2n 1-r  ~ ! ! . �.3. 2!2 2 Y2b ~ 2
' nn nA 1+r  

It can be shown that the terms enclosed in the parenthesis in the second

term on the right hand side of Eq. �.3.1! cancel and do not contribute

to the covariance function. The fourth term on the right hand side of

Eq. �.3.1! may be written as

in which

E H q -z!H n -z! V V } = Z s!i} ~!ds �.3.4!

and

AA= z-b Vl -b2V2!/al11 22

BB= z-b2yl-bly2!/ �.3.5!

r ~! =  R  T!-blR y T 2 V ~1

is the conditional correlation coefficient of n1 and !i2 gives Vl and

V2

1=  y o! - y  ! yy -! ! /  - yy  ! ! y

< 1 2 yl 2    ,-z!H .2- !j = E<y,fvl! 2I 2!E<H <, � !H >2- !tvl 2ji   .3.3!
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b2= r V T! � r V�! rVV T!! rVV i V

and

R 0 - lR V�! - b R  T!!

Substituting Eq. �,3.4! into Eq. �.3.3!, together with the result of

Eq. �.3,2!, fq. �.3.1! becomes

2

E  Y1 l l!  YZ E YZ ! = C~og,<r~~  !L b,b,r   !! +
!I 2s ~1- r   ~ !

V2b 2 d 2 VV 1! ' ' Co'V y1 ly! I 2 y! ! y2 ly2 I 2 
nn

The spectrum S �  n! of Y is again the Fourier transfrom of Ryy T!.
YY

That is

R �  .!e" n'd, .
YY

S �  n! =- l
YY Zn �.3.7!

It is noted that R �  T! cannot be integrated in closed form andYY-

must be perf'ormed numerically. Due to the multiple integrals involved,

it is desirable to simplify the exact formulation by its approximation.

Q  !ds dy2dy!-E  Y!. �.3.6!
1-r  I!2

The covariance function of wave force Yl and YZ is seen to be

independent of time t and is denoted by R �  I!.



78AN APPROXIMATE REPRESENTATION

The approximate representation of R �  ~! can be found by Taylor's series
YY

expansion of the function about r  ~! = r V T! = ryy T! = r A <! = rAA T!nn ny yy qA

= 0 as previously done for the covariance function of U in Chapter 3.
Letting AR �  T! denote the approximate covariance function of wave

YY

force, it can be shown that by retaining only the first two terms in the

expansion,

222 24 2 2G1G2 r V�!G0G1
ARYY x! = CMaAQ  b!r~ ~! + Cpay Gp+GOGlr  T! +   !0 y 0 0 1

1 r y�! 1 r y�!2 2

y � ! GpG 22

G162 + !ryy ~!! - E  Y!
�!

2

qy

�.3.8!

in which

Gp L � b l y �! !-L p,b,-r y'�!!

y P!b r y P!b
01= 1-r 11�! Z b! <�-r y�!  !-b !! �  " ! - 0  "

1-r <�! 1 r<�-!

r y�!b+0r y�!b 1-r y�! Z  "" 	
ny

1-r y�!

r y P !b

1-r <�! 1-r ~�!

2 2r y�!

1-r2y p!

r , O!b

1-r ��!

2 r,V�!+ r ~�! b ~ b! Q  " !
qy

" u�!
b

y � ! b
Z b! Z ~!

1-r y O!
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1-r �!!!V 1-r «�!!!V

The approximate spectrum A~yy n! is the Fourier transform of ARyy T!
and is

y �! GPG1n
!

2 3 2G1G2

1-r ,�!2
!!V a �-r V�!!

0 6 G! �  ! ~  ',.'� !! '~ '" ' .~ !'!'!! !,�  ! .  ,' !' !!!z  I   .. !
1 r y�! 1 r V�!

in which S y n! is the cross spectrum of q t! and V z,t! and is given bynV

Eq. �.3.10! by replacing U by V.

Numerical results are shown in Figures �.6! to �.11!. These

include the exact and approximate covariance functions and spectrum

together with the exact covariance function and spectrum of Borgman �967!.

For covariance i'unctions, only the portions corresponding to ~>0 are

shown and the spectra are the one-sided spectra. The agreement between

the exact and approximate results are in general reasonably satisfactory,

although to a lesser extent as compared with the cases of 9, A, and P

shown in Figures �.14! to �.31!. Comparison of the present results

with those of Borgman �967!, however, indicates that the latter grossly

overestimates these quantities at and above the mean water level.
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50 Fig, 4.11 Spectrum of Wave Force at z = -o = -5.59 ft., Mean Wind
Speed = 40 mph, Diameter of Cyl'Inder = 1 ft.
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S. SUMMARY AND CONCLUSIONS

In this investigation, the statistical properties of wave field

kinematics, pressure, and wave force in a random wave field are derived,

taking into account the free surface fluctuation phenomenon. Numerical

results are also obtained and presented.

The following conclusions ar~se out of this study:

1. The horizontal component of velocity, acceleration, pressure,

and wave force are all non-Gaussian.

2. The horizontal component of velocity, pressure, and wave force

all possess non-zero mean and are skewed. The horizontal

component of acceleration, however, has zero mean and is not

skewed.

3. Far below the mean water level, the mean, variance, and skewness

of the horizontal component of velocity, acceleration, pressure,

and wave force approach past results. Far above the mean water

level, these quantities approach zero whereas past results

indicate that they grow indefinitely.

4. The covariance functions and spectra of the horizontal component

of velocity, acceleration, pressure, and wave force are derived

and approximate expressions are also obtained. The appnoxima+ions

are seen to be adequate. The present covariance function and

spectrum converge to past results when the point is far below

the mean water level. Far above the mean water level, they

deviate drastically from past results.

It may therefore be concluded that the free surface fluctuation

phenomenon has a major influence on the statistical properties of the

quantities examined and must be considered.
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