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1. INTRODUCTION

1.1. MOTIVATION OF RESEARCH
The design of marine structures requires knowledge of the forces to
which they are subjected. Of primary importance are the wave forces
(American Petroleum Institute, 1971), The evaluation of wave force on
structures has been the subject of research for many years. For slender
members, the Morison formula has been widely used.
Let Y denote the wave force per unit length of a vertical cylinder.

According to the Morison formula

Y= Cy VIV] + CA

in which V and A are respectively the horizontal components of fluid particle
velocity and acceleration at a specific point under consideration at time

t. CD and CM are respectively the drag and inertia coefficients which are
determined experimentally.

To evaluate the fluid particle velocity and acceleration analytically,
the potential theory of fluid flow has been shown to be generally statisfactory
(Kinsman, 1965). That is, the fluid is assumed to be incompressible, invis-
cid, and its motion irrotational. Under these assumptions, the fluid par-
ticle velocity is the gradient of a potential function which is governed by
the Laplace equation. The fluid motion everywhere below the free surface
can be determined from the solution of the Laplace equation using the
boundary conditions at the free surface and at the bottom of the fluid.

In an open sea, most of the energy of the waves comes from wind. Under

extreme design conditions, the wavesare generated by strong winds such as
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hurricanes. These wavesare random in nature and therefore require proba~
bilistic descriptions.

It has been shown (Kinsman, 1965) that if the duration of the storm
is long, the sea surface elvation can be reasonably represented by a Gaussian
stationary process.

Utilizing these assumptions on wave characterfstics, statistical
properties of the random wave field and wave force were studied analyti-
cally by Borgman (1967, 1972). There are, however, some important consid-
erations that have been overlooked. These are explained briefly in the
following: |

1. It is noted that the potential theory for fluid motion and hence

the Morison formula are applicable everywhere below the free sur-
face. Failure to recognize this has led past researchers (Borgman,
1967, 1972, Pierson and Holmes, 1965) to refrain from evaluating
statistical properties of the wave field and wave force above the
mean water level.

2. Due to fluctuations of the free surface, a fixed point on a

cylinder in the vicinity of the mean water level may rise above

or fall below the water. At instants when the point is above the
free surface, the velocity and acceleration of fluid particles at
the point are zero and the element of the cylinder experiences no
wave force. The Morison formula given above, which has been the
basis of derivation of wave force statistics in the past, does not
reflect this phenomenon.

Preliminary studies of the effects of the free surface fluctuations
on the statistical properties of wave field kinematics, pressure, and wave
force were carried out recently (Tung, 1975 a, b). For the restricted

statistical properties examined therein, and by comparisons made with past
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results, it was shown that appreciable differences were observed especially
at and above the mean water level.

1.2. OBJECTIVE AND SCOPE OF RESEARCH

Due to the demonstrated importance of the effects of the free surface
fluctuations phenomenon and the obvious implications on the analysis and
design of marine structures, it is the purpose of this study to extend
the idea developed by Tung (1975 a, b) to further derive the probability
density function, mean, variance, skewness, covariance function, and spectrum
of the horizontal components of fluid particle velocity, acceleration, pres-
sure, and wave force.

Numerical results are obtained for mean wind velocity W = 40 miles per
hour {mph), presented graphically and compared with those obtained pre-
viously in which the free Surface fluctuation phenomenon was ignored.

In this study, the potential theory for fluid motion, carried to the
first order, is used. The sea surface is assumed to be Gaussian and
stationary in time (and homogeneous in space). For simplicity, waves are
considered to be one-dimensional. However, the ideas underlying the
derivation are general and can be extended to the two-dimensional case.
Also, the waves are assumed to be in deep water, and wave force computa-
tion is based on the Morison formula.

For convenience of presentation, the description of random surface
waves and those quantities associated with wave field kinematics and pres-

sure which will be repeatedly used in the text is first recapitulated briefly.

2. DESCRIPTION OF RANDOM SEA
The waves formed on the surface of the sea are almost always random.
This is especially true for wind-driven sea waves.

When the storm duration is long compared with typical wave periods as
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is the case in most circumstances, the surface wave elevation at a specific
point can be adequately regarded as a stationary random process in time.
That is, the statistical properties of the surface wave elevation at the
point are independent of time (Kinsman, 1965).

Considering the sea surface elevation as a stationary random process,
the statistical properties of the sea surface elevation and the associated
wave field kinematics and pressure are discussed in the following sections.
Materials in sections 2.1 ahd 2.2 are extracted mainly from Phillips (1969).

2.1, DESCRIPTION OF SEA SURFACE ELEVATION

To describe the statistical properties of the random §ea surface, con-
sider, for brevity, only one-dimensional waves. Let x be the horizontal
axis in the direction of wave propagation. The z-axis is considered posi-
tive upwards with origin at the mean water level. Denote the random sea
surface elevation at x = 0 by z = n{t) in which t is time.

The fundamental measure of the random process n(t) is the joint
probability density function f(n],nz,.:.,nm) of ny = n(ty)s ny = nlty),e.s,

N = n(tm). That is, f("I’nZ""’“m) dn1dn2...dnm represents the proba-

bility that the surface wave elevation at a specified point x = 0 and at

all the times Lty By s By 1ies within assigned Timits npsny * dnyeny,

N, + d”z’ bees Mgy ¥ dnm. The joint probability density function, however,

is difficult to use without further assumptions and simplifications of the
random process n{t).

If the distribution of the sea surface elevation is considered to con-
sist of contributions arising from relatively unrelated forces originating
at different times, then the sea surface, considered as the sum of the
statistically independent contributions of these elements, may be assumed

to be Gaussian. Gross observation of the sea appears to confirm this
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assumption (Kinsman, 1965). The Gaussian assumption of the sea surface
elevation is therefore adopted throughout this research.

Under the Gaussian assumption, the probability law for the process
is completely determined by the mean and covariance function of n (t).

Since the origin of z is selected at the mean water level, n(t) is
a zero mean process and knowledge of its covariance function suffices to
determine the probability iaw of the process completely.

The covariance function, Rnn(r), of the stationary process, n{t), is

Rnn(r) = E{(n(t) - E{n{t)}) (n{t+r) - E{n{t+c)})}

in which E{-} is the expected value of the quantity enclosed in the bracket.

Due to the zero mean property of n(t), the covariance function is simply

Rnn("r) = E{n(t)n(t+r)}. (2.1.1)
It is noted that
2
Rnn(o) = E{E (t)} (2.1.2)
=g
n

is the mean square surface elevation or variance Unz of n(t) since
n{t) has zero mean. The quantity-oTI which is the square root of the
variance, is the standard deviation of n(t).

Associated with the covariance function Rnn(T) is the frequency spectrum
Snn(n) of n(t) defined as

5, () =5 f R, () e'"de (2.1.3)

(4
in which i =V-4 is the imaginary unit, n, ranging between - = to +

=, is the frequency and the integration is over all values of t from
- L0 + @,
The inverse relation is

Rnn(r)==f S, (M) e Mdp. (2.1.4)
n



In particular,

R (o) = [ 5__(n) dn (2.1.5)
2 n

= g
n

so that Snn(n) can be interpreted as the density of contributions of energy
among all the frequencies present.

The correlation coefficient rnn(r) of n{t) which appears in subse-
quent derivations, is defined as

2
rnn(t) = Rnn(r)lcn (2.1.6)

with

rnn(o) = 1.

Much effort on the part of oceanographers and engineers has been
spent on determining the characterization of wind generated wave
spectrum. The underlying theories of wind wave generation and sta-
tistical analysis of wave records are well summarized in Phillips (1969},
Kinsman {1965), and Pierson and Moskowitz {1964) and are therefore not
repeated here.

For engineering applications, the Pierson-Moskowitz-Kitaigorodskii
spectrum is commonly used. That is, for a fully aroused sea, the ane-
sided frequency spectrum of the sea surface elevation, Snn(n), is

(Pierson and Moskowitz, 1964)
8,92

r Gy
Snn(n) 3 exp{-B,{ wn) } , nvo (2.1.7)

-2
in which By < 0.81 x 10 , By = 0.74, W is the mean wind speed and
g is gravitational acceleration. This spectrum, with a cut-off fre-
guency n = 0.8 rad/sec is used for subsequent numerical computation

throughout this study.



2.2. FOURIER-STIELTJES REPRESENTATION OF
SEA SURFACE ELEVATION

In dealing with random process, it is often convenient to decompose
the process into Fourier components. This is particularly true when
relations between the statistical properties of wave field and those of
n{t) are required. That is, the sea surface elevation may be conceived
as consisting of the sum of the infinite numbers of infinitesimal harmonic
waves. | '

The Fourier-Stieitjes representation of n{t) is given by (Phillips,
1969)

n(t)= J/ dB(n)e” Nt (2.2.1)
n

in which dB(n) is a Gaussian, zero mean, complex random function of
frequency n of component waves and the integration is over all the fre-
quencies present.

The function dB{n) has the property that

dB(n) = dB*(-n)
in which "*" denotes the complex conjugate. This is due to the fact
that n(t) is real, so that

n(t) = n*(t).
That is

n(t)

[ a::lB(n)e"int
n »

f dB*(n)e‘nt
n

I dB*(-n)e 1"t .
n

The frequency spectrum Snn(") of n{t) may also be represented in
terms of the Fourier-Stieltjes coefficient dB{n) of n{t}. That is,

from Eq. (2.2.1)



Rnn(T) = E{(n*(t)n(t+c)}

i{ny~n,)t -in,tT
{ [' E{dB*(n1)dB(n2)} e 1274 2 .
n1 n
Since the process n(t) is stationary, the covariance function Rnn(T)

is a function of t only, so that the condition Ny =N, must be satisfied,
giving
o . if Ny ¥ n,

17 (2.2.2.)
E{dB*(n;)dB(n,)} [s (n)dn  if ny=n,=n
nn 2

which follows by reference to Eq. (2.1.4).

It is noted that since Snn(n) is the exvected value of the product
of the complex random function dB(n) and its complex conjugate, it must
be real and positive for all n. Also, from Eq. (2.2.2), the different
Fourier components are uncorrelated and are therefore statistically
independent due to the Gaussian assumption on n{t) (Papoulis, 1965).

2.3. FOURIER-STIELTJES REPRESENTATION OF WAVE
FIELD KINEMATICS AND PRESSURE

Let the fluid be assumed to be incompressible, inviscid, and the

motion irrotational. Foliowing the exposition of Phillips (1960), there

exists a velocity potential $ (x,z,t) that satisfies the Laplace equation

92¢ (x,z,t) = 0
2 2 2
everywhere below the free surface in which v° = (2 + &) is the Laplace
ax 3z
operator.
To relate the velocity potential and the surface elevation in a ran-
dom sea, it is convenient to represent the former also in terms of a
Fourier-Stieltjes integral. In deep water, it may be verified that the

Fourier-Stieltjes representation of 4 (-) is
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5 (x,2,t) f da(n) ef (kx = nt) [k|z (2.3.1)

) n
which satisfies the Laplace equation and the kinematic boundary condi-

tion that

Tim ¢ (x,z,t) = 0,

o Ul
The quantity dA{n) in Eq. (2.3.1) is another Gaussian, zero mean, complex
random function and k is the wave-number.

To relate dA(n) to dB(n), the nonlinear kinematic boundary condition

of the free surface

an _
2@ - ), 9

1

is used in which Vi (%E) is the horizontal gradient operator. The argu-

ments of ¢ (x,z,t) and n{t) are dropped here for convenience. Considering
infinitesimal waves, it can be shown that (Phillips, 1960}, to the first

order of approximation,
dA(n)= - ~|l'|‘— dB(n).
k

Thus

$ (x,z,t) = ~i IP L dB(n) ei(kx-nt)e|k|z. (2.3.2)
n |kI '

The dispersive relationship relating frequency n with wave-number
k, of component waves is, to the first order,

n2 = gk

which is obtained from the dynamic boundary condition

gn = - (g%)n - % (Vi)i
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at the free surface in which VE(%; ; + %E 2) is the gradient operator,

Q, z being unit vectors in the x and z directions.
Having the velocity potential ¢ (x,z,t), the horizontal fluid particle

velocity at point (0,z) is

V(z,t) = 29 kk,z,t)

X ," =0 (2.3.3)

=[ In] dB(n) elklz g-1nt
n
and the horizontal fluid particle acceleration at point (0,z), to the

first order, is

Alz,t) = a_:g,y_ (2,3.4)
a [ o §

= - [' n|n|dB{n) elklze'int.
n
The pressure, p{z,t), at point (0,z), is given by the Bernoulli's

equation

P(z,t) = -r:(iﬂiti'il + % fix,z,t) + 9z) |, ., (2.3.5)
3

in which p is density of water and q{x,z,t) is the total fluid particle

velocity at point (0,z). To the first order of approximation, the non-

linear term qz(x,z,t) may be neglected and by using Egs. (2.3.2) and (2.3.5),

the Fourier-Stieltjes representation of p(z,t) is, disregarding hydro-

static pressure,

P{z,t) = -pg f’ dd(n) e]k]ze-int' (2.3.6)

n
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It is noted here that Eqs. (2.3.3), 62.3.4) and (2.3.6) hold everywhere

below the free surface.

In subséquent derivations of the statistical properties of wave field
kinematics, pressure and wave force, several of the statistical properties
of V(z,t), A(z,t), P(z,t), and n(t) are required. These properties are
discussed in the following.

From Egs. {2.3.3), (2.3.4), and (2.3.6) it is seen that, to the first
order of approximation, V(z,t}, A(z,t), and p(z,t) are individually
Gaussian process since dB(n) is Gaussian and statistically independent
of each other for different n. Furthermore the quantities V(z,t),

A{z,t), and P(z,t) are jointly Gaussian with themselves as well as with
n(t) since, to the first order, they are linearly related to each other
and to n(t).

Also, from Egs. (2.3.3), (2,3,4), and (2.3.6), since dB(n) is zero
mean, V(z,t), A{z,t) and p{z,t) are zero mean.

The covariance function of V(z,t) and V(z,t+1), in anticipation that

it is independent of time t, is denoted by RVV(T) and is
Ryy(t) = EQV*(z,t)V(z t+ )},
Thus, from Eq. (2.3.3)

Uk1|+|k2|)z int —inz(t+-ﬂ

= 1

Rw[r) f [ |n]n2]E{dB (n] )dB(nz)}e e ] .
In view of Eq. (2.2.2), the above equation can be written in terms of the

frequency spectrum Snn(n) of n(t). That is

Ryy(t) = [ n? Spn (M) e?lkizg-inTy, (2.3.7)
n

It is noted that the covariance function of V(z,t} and V(z,t+<) is
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indeed independent of t and is an even function of t. Also, when

=20

Ryy(0) = ECVE(z,1)) | (2.3.8)

_ 2
%
in which 03 is the variance of V{(z,t) and ay is its standard deviation.

Denoting va(n) the frequency spectrum of V(z,t),

1 i - |
Syy(n) = == f Ryy(t)e'"dr | (2.3.9)

T

with inverse relation

Ryy(7) = f’va(n)e'iann (2.3.10)
n

it is seen from Egs. (2.3.7) and (2.3.10)} that
- .2 2|k|z

va(n) =n Snn(n)e . (2.3.11)

The correlation coefficient rVV(T) of v(z,t) and V(z,t+t)
is

2

rW(‘r) = va(r) /GV (2.3.12)
with

rVV(O) =1,

In the same manner, it can be verified that the covariance function,

standard deviation, spectrum, and correlation coefficient for A(z,t) and

p{z,t) are respectively

Raalt) = I' nt Snn(n) g2l klzg-nTy, (2.3.13)
n
“i = Ry (0)
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-4 2|k|z
SAA(n) n Snn(n)e

raalt) = Ryalt) / o4

and
Rop(7) = plg? f Snn(n)ezlk[ze'1mdn (2.3.14)
n
2 _
o = Rppl0)

Spp(n) = o%g? s__(n) e? Ikl
rop{t) = Roplt) 7 o2
PP Pp P’

In addition to these quantities, the cross-correlation coefficients

L (), LY (z), and rnp(r) of n(t) and A{z,t}, n(t) and V(z,t), and

n{t} and P{z,t) of a given point (0,z) and at time instants t and t + 1,
are required. These quantities may be obtained in much the same way that
PAA(T), rvv(r). and rpp(r) are determined and are:therefore merely given

below without further derivations.

= i lk|z_-int
rnA(r) = I. n!n|5nn(n)e e dn/o o, (2.3.15)
n
with
rnA(O) =0
and

rnA(T) = -rnA(-r)

royle) = f|n|snn(n)efklze‘i"‘dn/qnaV (2.3.16)
n
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with

-3
o
-z

——

o

—
i

3

- lk|z
f In] Srm(n)e dl‘l/andv
n

and

r‘nv('r) = r‘nv(-r)

r plc) =pg f s (el Iz "an/g o (2.3.17)
) .
with
r (0} = -pg f' S (n)e'klzdn/c a
nP nn n P
n
and

rnp('l') = rnp("T)-

3. STATISTICAL PROPERTIES OF VELOCITY, ACCELERATION,
AND PRESSURE

In this chapter, expressions of the probability density function,
mean, variance, skewness, covariance function, and spectrum of the horizontal
component of fluid particle velocity, acceleration, and pressure, taking
into consideration the free surface fluctuation effects, are derived.

The horizontal velocity, acceleration, and pressure at point (0,z)
at time t given by Eqs. (2.3.3), (2.3.4), and (2.3.6) are valid everywhere
below the free surface. It is recognized that due to fluctuations of the
free surface, a point under consideration, especially when it is around
and above the mean water level, may rise above the free surface, in which
case, the guantities under consideration are all equal to zero and the above
equations are no longer valid.

To take into account the free surface fluctuations phenomenon, the
horizontal component of velocity, acceleration, and pressure at point

(0,z) at time t should be written as
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V(z,t) = V(z,t) H(n(t)-2) (3.1)

A(z,t) = A(z,t) H(n(t)-z) (3.2)
and

P(z,t) = P(z,t) H(n(t)-z) (3.3)

in which H(-) is the Heaviside unit function. That is

0 if y <0
Hy) = ‘

1 if y>0-

Examination of Eqs. (3.1), (3.2), and {(3.3) shows that while
V(z,t), A(z,t}, and P(z,t) are Gaussian, ¥(z,t), A(z,t), and B(z,t),
being nonlinear functions of these quantities and n{t), are obviously
non-Gaussian. Furthermore, although V(z,t), A(z,t), and P(z,t} are zero
mean, V(z,t), and P(z,t) are not as will be shown subsequently,

It is the lack of consideration of the free surface fluctuation
phenomenon that is responsible for the errors committed in the past and
the present study seeks to rectify.

Before proceeding to derive the statistical properties of V(z,t),
A(z,t), and P(z,t), it is noted that these three quantities are similar
in form as shown in Eqs. {3.1), (3.2), and (3.3). This observation
suggests that their respective statistical properties can be deduced from

those of a random process U(z,t) such that
U(z,t) = U{z,t) H(n(t)-2) (3.4}

in which U(z,t} is stationary in time with zero mean and standard

deviation oy and jointly Gaussian with n(t). That is, the joint probability

density function of U{z,t) and n(t) is
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£ (yag) = exp (- ——[(l P-2r (0) Y+ (L )2y
Un 3 %Y nlU Uan Un
2noyo \ 1-r, 5(0) 2(1-r, 5(0)) |
(3.5)

in which rnU(O) is the cross-correlation coefficient of n(t) and U{z,t).
3.1. PROBABILITY LAW OF VELOCITY, ACCELERATION,
AND PRESSURE
To derive the probability density function of U(z,t), the theorem of
total probability is used (Papou1is, 1965). That is

fU(Y) = Prln < 2] fU| (y) + Prln > z] fp, (y): (3.1.1)

Uln > z

in which Pr[.] is the probability of the event enclosed in the bracket,
fn(.) is the probability density function of U and fU'M(') is the
conditional probability density of U given the event M. The arguments

t and z of n(t) and U(z,t), U(z,t) and subsequently the same for V(z,t),
V(z,t), Alz,t), A(z,t), P(z,t), and B(z,t) are dropped for convenience.

Noting that n is a zero mean, Gaussian process

Prin > z] = Q(b) (3.1.2)
Prln < z] = 1-Q(b) (3.1.3)
in which

=

Q(b) =r Z{x)da
b

Z(x) = l—-exp(-% Az)
I
and
b= Z/dn
Since, given the event [n<z], the point under consideration is above

the free surface, it is obvious that

ez (¥) = 809 | (3.1.9)
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in which ¢(-) is the Dirac delta function.

The term fU|n>z(') is given by,
Oz () =] Fun(¥»8)45/0(b) (3.1.5)
§ =2

by definition of conditional probability.

Upon substituting Eq. (3.5) into Eg. (3.1.5), performing the inte-
gration and using Egs. (3.1.1) to (3.1.5), the probability density function
fD() of D is

b~rnu(0)Y/cU)

foly) = [1 - Q(b)Jsly) + —!‘J Z{y/o, )0 (3.1.6)
1—riu(0)
To show
I = f fg (y)dy =1 (3.1.7)

it suffices to substitute Eq.(3.1.6) into the above equation, giving,

w w b-r_ (0)y/a
:=f [1-0(b)Js(y )y [ L 7 gty
- o U U .2
Vl-rn(O)

o ) ]
L -1 g(0)

o]

=[1-o(bn+f_ 26) {wz(“ ol d
R 1-r2,(0) a\fi-rfy0)

Noting that

;
" g- - ryl0) 5

J’ 2(— ") Y -
o v1 - rﬁU(O) cU\’1 - riU(O)

I=1-Q(b)+f 7(-8) %
; O'nCF

1,

n
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the required result is obtained.
The probability density function fﬁ(y) of the horizontal fluid
particle velocity V may be obtained from Eq. (3.1.6) by replacing o

and rnU(O) by oy and rnv(O) respectively, giving

y
b-r_(0) 5y
fply) = [1-0(b)1s(y) + 2(£) q( ) o ) /oy, (3.1.8)
v
1 - rnv(O)

in which oy and rnv(o) are given by Eqs. (2.3.8) and (2.3.16), respectively,

Similarly, noting that rnA(O) = Q,

faly) = 01 - a(b)Is(y) + 2(-};) a(b) /o, (3.1.9)

oy being given by Eq. (3.3.13).
Also,

b - rnp(O)y/cP)

/UP
W - rip(O)

in which op and rnP(O) are given by Egs. (2.3.14) and (2.3.17), respectively.

(3.1.10)

f5(y) = 1 - Qb)Js(y) + 2 (ﬁ—P) ot

From Eqs. (3.1.8), {3.1.8), and (3.1.10) it is seen that when the
point under consideration is far below the mean water level (z + - =),
the influence of the free surface fluctuation on the statistical proper-

ties of wave kinematics and pressure diminishes (rnV(O) - 0, rnP(O) - 0)

and the probability density functions of V(z,t), A(z,t), and P(z,t) approach
. AT 1 oy 1y -
the Gaussian distributions fv(y) o Z(GVL fA(y) o Z(GA),and fp(y)

1 Z(-Y) of V, A and P, respectively.
%

Also, far above the mean water level {z-tw}, fv(y), fR(Y)s and fp(Y)
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all approach the Dirac delta function.

Numerical results of fv(y), fi(y), and fﬁ(y) are obtained and compared
with fv(y), fA(y), and fp(y), respectively. These are shown in Figures
(3.1) to (3.9) for a mean wind speed W = 40 miles per hour at three
locations z = +on, z=0and z = -0, in which o is computed to be
5.59 feet. The abscissa in these figures are non-dimensionalized.

The discrepancies between fv(y) and fv(y), fA(y) and fA(y), and
fp(y), fp(y) are clearly seen; the differences being larger for points
above the mean water level (z > o) than below it. As the point under
consideration moves below the mean water level, it is seen that the
probability density functions of V, A, and P approach the probability
density functions of V, A, and P, respectively. That V and P are skewed
with non-zero mean, are seen in these figures. Also, A is unskewed with
zero mean, albeit non-Gaussian.

3.2. MEAN, VARIANCE, AND SKEWNESS OF
VELOCITY, ACCELERATION, AND PRESSURE

The mean, variance, and skewness of V, A, and P can be deduced from
the corresponding quantities of 0. To find the mean, variance, and skewness
of U, it suffices to determine its first three statistical moments.

The first statistical moment E{U}is in fact the mean, and the variance
0%—15 given by

o = E(0%) - E4 (3.2.1)

0
in which E{0°} is the second statistical moment of . Also, the skewness
vy of U is

vg = E((0 - E{U})3}/cg (3.2.2)
in which E{U°} is the third statistical moment of O.

In this study, the statistical moments of [l are obtained by three
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8] £,(y/0y)

- = = =no free surface fluctuations

axi074 / ylo
1 1 1 1 Ll 1 v

-5, -4, -3, -2. 1. o0. . 2. 3. & s,

Fig. 3.1 Probability Density Function of Horizontal Component
of Velocity at z=+on = +5.59 ft., Mean Wind Speed = 40 mph

with free surface fluctuations .
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———with free surface f]uctuations
5 1 §------ no free surface fluctuations
10\
1072 /

10‘% /
3)(10‘.4 / |

5. -4 -3, 2. . o 1. 2. 3 4. s

Y/Uv

Fig. 3.2. Probability Density Function of Horizontal Component
of Vélocity at z = 0 ft., Mean Wind Speed = 40 mph
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-

with free surface fluctuations
fy(y/oy) —
---------- no free surface fluctuations

. 158

10

-2

1073 /
/

3x1074 / |

T T T T T T 1 T I

-5. -4, -3 2. -1, 0 1. 2. 3. 4, 5.

Fig. 3.3. Probability Density Function of Horizontal Component
of Velocity at z = o = -5.59 ft., Mean Wind Speed = 40 mph

Y?ov
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84 fA(y/aA) - ———— with free surface fluctuations
- 0% 4 ? -------- no free surface fluctuations
1071
1072
1073
3x1074 IW"A
-5, 5.

Fig. 3.4 Probability Density Function of Horizontal Component

of Acceleration at z = +5_ = +5,59 ft., Mean Wind Speed =
40 mph n
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fA(y/cA) : with free surface fluctuations
5] - no free surface fluctéaddons
1071
1072
1073
-4 /
3X]0 ¥ T T L ] LJ I 1 y UA

-5, -4, -3, 2. -l. 0 1. 2. 3. 4. 5.

Fig. 3.5 Probability Density Function of Horizontal Component
of Acceleration at z = 0 ft., Mean Wind Speed = 40 mph
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with free surface fluctﬁations

fA(y/oA) -------- no free surface fluctuations
. 1584
1071 .
1072
1073 |

y/o
-4 [ Yon
3x10 T T T T T 1 1 1

-5, -4 -3. =-2. -l 0 1. 2. 3. 4. 5.

Fig. 3.6 Probability Density Function of Horizontal Component
of Acceleration at z = -0 = -5.59 ft., Mean Wind Speed =
40 mph . n
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.84 1 foly/op)

i

with free surface fluctuations
------- no free surface fluctuations

LY
wr

1074 | \

3x10°° \
5. 4. -3. -2. 1. 0. 1. 2. 3. & s

F4g. 3.7 Probability Density Function of Pressure at z = +¢_ =
+5.59 ft., Mean Wind Speed = 40 mph n
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fp(y/ffp)

with free surface fluctuations
------- no free surface fluctuatiens

14
L4 4
1%

\
/

1072 |
\

1073

107 \

3x10°% \ ¥/op

T T T T T Y T T T
5

-5. -4, 3. 2. - 0 1. 2. 3. 4.

Fig. 3.8 Probability Density Function of Pressure at z = 0 ft.,
Mean Wind Speed = 40 mph
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foly/op)
164 P P 4 ——— with free surface fluctuations
------ no free surface fluctuations

3}

Tr
J
Ll

1074 \

\ y/o
3x10°8 : : P
5. -4, 3. -2. 1. b V. 2 3.

o
o

Fig. 3.9 Probability Density Function of Pressure at z
-5.59 ft., Mean Wind Speed = 40 mph

-g =
n
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different methods. That is, they are obtained

1. by means of the probability density function of T
2. by method of moment generating function of U, and
3. directly from Eq. (3.4).
METHOD 1.
To obtain the first three statistical moments of U from its
probability density function; note that by definition of statistical

moments, they are

w

B f v ofgly)ay . 3 =1, 2, 3.

Using Eq. (3.1.6)
§

© (0)

U

E(09) "r JZ(*”—)( 2(-n b

ds
- 1 -p U(O Un\’] ~ rﬁu(o)
2( Z(A)[ y Z( ..r-U(o \‘]-rU(O)dy dk/a 'Ir' ( )

in which X = %r- . Lletting
n

R ORY /\"1-r§U(0)

the above equation becomes

o

b oo

in which Aj, j=1,2,3, are polynomial functions of rnU(O) and y.  The
expressions of Aj are rather lengthy and are therefore not given; the

resulting integrations, however, are straightforward and can be performed
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easily by means of integration by parts giving

E{y = oy rnU(O) Z(b) (3.2.3)
E(D%} = 05 (Q(b) + rﬁU(O) b (b)) (3.2.4)
and
E(0%} = o) (3+r§U(0) (b2-1)) ry(0) Z(b). (3.2.5)
METHOD 2.

The moment generating function MU(S) of 0 is,

My(s) = e’}

[ ety (y)dy

-0

by definition. Substituting Eq. (3.1.6) into the above eguation

b - rnU(O)y/oU\ dy

F g
’ 2 U

1 2.2 =
= 1-Q(b)+e? Y j/ 202, )dr,
b - rnU(O) soy

M(s) =1 - Qb) {w e> ze,fa) Q (

in which *o = g; - rnU(O)UUS' Therefore
1 2.2

2 9yS
MB(S) =1-Q{b) + e Q(b-rnU(O) oy s ).

The jth statistical moment of U is, by definition,

E(0Y) = o M= {s)
0 = =5 Myls ls= 6. (3.2.6)



31

which can be performed in a straighpfdrward manner giving the same
results as those obtained by Method 1.
METHOD 3.

The first three statistical moments of U may also be obtained directly
from Eq. (3.4) without resort to the probability density function of 0
or its moment generating function. That is, take the expected value of
both sides of Eq. (3.4)

E{0} = E{UK(n - z)}.

The above equation can be written as (Papoulis, 1965)
E(0} = E{H(n-z)E{U|n}} (3.2.7)

in which E{U[n} is the conditional expectation of the random variable
U given the random variable n. Noting that ¥ and n are jointly Gaussian,

it follows that (Papoulis, 1965)

E{U[n} = rnU(o) oy (L.

g
n

Eq. (3.2.7) can then be written as

E{0} = rnU(o) % E{%; H{n-z)}.

Thequantity E{;l H (n-z)} is easily obtained by integration by parts,
n
giving

E(0} = rnU(o) oyZ{b}.

The second statistical moment of U can also be found by squaring and

taking the expectation of both sides of Eq. (3.4}, giving

E(02} = EQUH(n-2)} - E{H{n-2)ECU°|n}} (3.2.8)
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in which (Papoulis, 1965)

(W% |n} = v, (0) uﬁ(g:-»)z + o5 (1-r2,(0)).

Using this result, Eq. (3.2.8) becomes

E(0%) = oU{(1 P gloda(e) +r U(o)E{ H(n-z)}}
n

in which E{(n )2 H(n-z)} can again be obtained by integration by parts.
After rearrang1ng, Eq. (3.2.4) is obtained. '
In much the same manner, the third statistical moment of 0 can be

derived. Thus

E(0%1= Et3H(n-2)} - (3.2.9)

= E(H(n-2) E(U3|n}}
in which (Papoulis, 1965)

3
£ = o 30 - 20y (0) 2+ 000 @,

Substituting the above result into Eq. (3.2.9) and integrating by parts,
Eq. (3.2.5) is recovered.
The statistical moments of V, A, and P are easily deduced from those

of 0. They are

E{V} = oy T V(o) Z(b) (3.2.10)

E(V) = op (Q(b) + rﬁv(o) bZ(b)) (3.2.11)
and

(75 = oy (3 + rﬁv(o) (b% - 1)) r.y(0) Z(b). (3.2.12)
Aimilarly

E(R) = E(RS) =
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and

E{AZ) = ai Q(b). (3.2.13)
Also

E(P) = op r p(0) 2(b) (3.2.14)

E(F%) = of (Q(b) + rﬁP(O) bZ(b)) (3.2.15)
and

3. 3 2
ECPY) = op (3 + 7 5(0) (b - T)r, ,(0) Z(b). (3.2.16)

From Eqs. (3.2.10), (3.2.12), (3.2.14), and (3.2.16) it is seen that
V and P have mean value and are skewed, as observed earlier in section
3.1, contrary to opinions commonly held in the past.

From Eqs. (3.2.10) to {3.2.16) it can be shown that as the point
under consideration is far removed from the mean water level, all these
quantities approach zero. In this connection, it should be mentioned that
below the mean water level, the quantities E{?Z}, E{AZ}, and E{ﬁz} approach

cvz, cAZ, and cpz, respectively. Also, above the mean water level, while

ags 9%s and op converge to zero as z becomes large, Oys Ip and op grow

indefinitely with z. It is for this reason that no attempt was made in
the past to evaluate these quantities above the mean water level.
Numerical results of the mean, variance, and skewness are given in
Figures (3.10) to (3.13) together with those of Tys g and op, as
function of z. The observations made earlier in regard to these quanti-

ties are vividly seen from these figures.
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Fig. 3.11 Mean and Standard Deviation of Horizontal Component of

Acceleration, Mean Wind Speed = 40 mph



36

z(ft)
5 - /
10. - /
5. 4 ./
| v ML
’ 200 300 | (1b/£¢2)
/
/ Standard Deviation
oV // °
Standard ’/A/’ /
Deviation
-10.4 Ip /
I
-15 4

Fig. 3.12

I
i

Mean and Standard Deviation of Pressure,
Mean Wind Speed = 40 mph




z(ft)

Fig. 3.13

Skewness of Horizontal Component of Velocity,
Acceleration, and pressure, Mean Wind Speed = 40 mph

37



38
3.3. COVARIANCE AND SPECTRUM OF VELOCITY,

ACCELERATION, AND PRESSURE
To derive the title quantities, those of [ are obtained first.

The covariance function of U(z,t) and U(z,t+1) is, by definition

cov(U(z,t), U(z,t+r)) = £0(0{z,t) - E{0(z,t)})(D{z,t+1)

~E(D(z,t4+c)1)} = Etl{z,t)0(z,t+)} - E5(D(z,t)} (3.3.1)

in which the property that E{U(z,t)} = E{0{z,t+r)} 1s used.

For convenience, let n,, U,, and 0, denote n{t}, Y{z,t), and
10 4 1 _

U(z,t), respectively and N U2’ and Uz denote the corresponding
quantities at (z,t+1).

Thus

1 = Uy Hing - 2)

=
%]
i

U2 H(nz - 2).
Multiplying these two equations and taking the expected value of

both sides of the resulting product gives

E{ﬂ102} = E{U]U2 H(nl - 2z) H(nz-z)} (3.3.2)
= E{H(“'I'Z) H(nz-z) E{U]U2|n-|n2}}

in which E{U1U2|n1n2} is the conditional expectation of the quantity

U1U2 given the values of N and Noe Since U1, Uz, N and n, are zero

mean random variables having joint Gaussian distribution, it can be shown

that (Papoulis, 1965, p. 257)

E(U, U (3.3.3)

NyNo} = m m + C
2lmnzt = My o o, Upnqma — “UqUplmymy

in which m is the conditional mean of U1 given ab and Ny

Uy Inyng

and may be written as
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= +
MWylngn, T2 M T 320

a linear function of N and Ny in which

oy = oy 0, (ry(0) = v (2)r (1)) /a (3.3.4)
2 = oy 0,0 (ryle) = v, (x)r 4(0)) /a

and
A= cn4 a - rnﬁ(f)) (3.3.5)

the quantity rnu(r) being the cross-correlation coefficient of n(t)

and U(z,t+7). Similarly, it can be shown that the conditional mean

of U2 given nT.and No ism + ayn,. The conditional

m ’ = daN
Uz Mz Ypimng 2T

covariance function CU]U of U1U2 given ny and N, is

2|M"2

= o tryyle) = o 2r (00 y(0) < v (2)(rP(0) + v

C
UyUz n3n; nn

(1))] /a}

and is independent of ™ and Ny rUU(r) is the correlation coefficient

of U{z,t) and U(z,t+1).
Substituting these quantities into Eq. (3.3.3) and subsequently into
Eq. (3.3.2) yields

E{U]UZH(nl-z)H(nz-z)} = Gy

E{H{n.-z)H{n,-2)} + 2a,a,E{

n%“(n] - Z)H(nz-z)} + (af + aS)E{nTnZH(n1-Z)H(n2-2)}.

The above equation can be written as
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E(U Uph(ny-2M(ny2)) = aryy(e)Libibir, () + 2r (O)r,(v)

2 2
bZ(b)Q(b(]-rﬂn(T)) ) + r.nl.l(o) + rnU(T) - zrnU(O)rnn(T)rnU(r)
J1 () \ an \J] - v (x)

y 2 b )} | (3.3.6)

in which

® b-r ()
Lo.bur, (o) = [ 200 o g,

b V] - r:n(r)

The covariance function is then obtained from Eq. (3.3.1). That it

fs a function of © only and is even is clearly seen, indicating that U

is covariance stationary. Let it be denoted by RDU(T).
The frequency spectrum Sﬁﬂ(") of U can be obtained by taking the

Fourier transform of RUU(T). That is
: .
SDU (n) = > jim RUU(T) e‘anr. (3.3.?)

The above integral can not be carried out in closed form and must be
performed numerically.

In Eq. (3.3.6), it can be shown that since

]im N OL(b’b’rnn(T)) = Q(b)

b(1- T
in ( rnn( ))) i

1
r—>00 ) Z
ql-rnn(r)
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and

11T+0(F§U(0) + rﬁu(r)-ZrnU(O)rn“ (T)rnU(T)) /(1,rin(1))1/2= 0

the covariance function RUD(T) approaches the variance c%-of the process

0 as © approaches zero. That is

Tim Rgg(r) = 64 (Q(b) + r'f]U(O)bztb)}

T =+ 0

1
=1
[ N

When the point under consideration is far below the free surface,

rnU(D) = PnU(T) = 0 and

lin Roglr) = o] ryyle)

rnU(T) + 0

whereas far above the free surface
lim RUD(T) = 0.

Z >+ o

The covariance function and spectrum of V,A, and P are obtained by
simply peplacing the quantities U, U, by the respective appropriate

counterparts and will not be repeated here.

AN APPROXIMATE REPRESENTATION
To facilitate computation of SUD(n), it is desirable that the
expression for RUU(T) be simplified so that the Fourier transorm in Eq.

(3.3.7) may be carried out in closed form.
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Let G(rnn(T), rnU(r), rUU(r)) be used to denote Ryp{t} as a function

of the three correlation coefficients indicated. Following Bargman

{(1967), the series representation of G(-) around rnn(r) = rnU(r) =

rUU(r) = 0 may be obtained by using the Taylor series expansion,

G(rnn(T)s rnu(T)a rUU(T)) = G(0,0,0)

)J

L..i_s

[( ( ) 5‘H_(_7 ( )-————(—T +r U( ) —Fa—(—y

G(rnn(T), rnU(r). rUU(T))]Tnn(T)'= rnU(T) - rUU(T)BO'

After some algebra, it may be verified that

2 2 2 2, .n
G(0,0,0) = % rnu(o) Z°(b) - E"{U} = 0

3

_ 2.2 2 .2
7, (020) To,0,0 7 o Yryl0) ¥ (0

gFgu(T) (- )g,0,0 = 201 Tyg(0) b2(6) (b)

2.2
gFﬁu(T)G("’o.o,o = oy T{b).

By taking only the first two terms of the series {j = 1), the approximate

covariance function ARUU(T) of UI and UZ is,

MRyp(c) = ogir (2 (0)PZ2(b) + 2r_(x)r (01BZ(b) Q(b)

+ryyle) (o). (3.3.8)
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The corresponding approximate spectrum, ASUU(n), is, by taking the

Fourier transform of Eq. (3.3.8),
Asan) = A7 P20’ e) 5 ) + (520r,y(©62(6) Q(o)
5.u(n) + ¢%(b) 5,(n) (3.3.9)

in which Snn(n) is given by Eq. (2.1.3) and

) 2 '
SnU(n) i o O‘U[ Y‘nU(T)e1anI

and

oo

Suu(n) = '2%1' GUZ/_m TUU('l-')eianT. (33.]0)

Again, by replacing of the quantities correspending to U and U by their
appropriate counterparts, the approximate covariance function and spectrum
of ¥, A, and P are obtained.

Numerical results of the exact and approximate covariance functions
and spectrum of ¥, A, and P are computed and shown in Figures (3.14) to
(3.31) together with the exact covariance functions and spectra of V, A
and P as obtained by Borgman {1967). The covariance functions are even
functions of © and only the portion for which ¢ > 0 are shown. Also, the
spectra shown are the one-sided spectra. It is seen that there is good
agreement between the exact and approximate covariance functions and spectra.
Appreciable differences are noted, however, between the present results
and those of Borgman (1967) at z = 0 and z = o below the mean water level,
as the influence of the free surface fluctuation lessens, so do these

differences.



44

Covartance = | ith free surface fluctuations

?.ﬂm\mmnmv
—_—— approximate, with free surface fluctuations
104
9.23
- ——— o = N0 free surface fluctuations
/’ ;
\
5.
\ -~ — T
2.83 \

1.17
0.

Il._.jam {Sec)
11.

Fig. 3.14 Covariance Function of Horizontal Component of Velocity at z = + ¢ = +5.59 ft. , Mean
Wind Speed = 40 mph
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Covariance
ﬂﬁnm\mmnmv with free surface fluctuations
10. . — — — approximate, with free surface fluctuations
- no free surface fluctuations
8.14 b

3.0
2.03

ime (sec)

1&@. w.dmno<m1¢m=nmmcanndo:o*=o1¢~o=ﬂmdnoavosmsnoﬁcmdon“wxmnuuoﬁﬁ..zmw::dzn
Speed = 40 mph .
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Covariance
> with free surface fluctuations
Pﬁnw\mmn )
10. - - — = approximate, with free surface fluctuations
— ——— No free surface fluctuations
7.19 b
..I./
5. 4 “~
4.2
2.97
0.
=5..

Fig. 3.16 Covariance Function of Horizontal Com
Wind Speed = 40 mph

ponent of Velocity at z

=g

n

-5.59 ft., Mean
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no<mm§:nm —— With free surface fluctuations
(ft"/sec’)
3.36 — — _ approximate, with free surface fluctuations
~
- / - no free surface fluctuations

.08 Time (sec)

Fig. 3.17 Covariance Function of Horizontal Component of Acceleration at z = + ¢ = +5,59 ft., Mean
Wind Speed = 40 mph n
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no<Mﬂ*n=
3 (ft \mon

~ with free surface
N

- - - approximate, with

\ .

2. \

fluctuations

free surface fluctuations

no free surface fluctuations

N ~__ \\\\

Fig. 3.18 Covariance Function of Horiz
Speed = 40 mph

ontal Component of Acceleration at z = 0 ft., Mean Wind

Time (sec)
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no<m1*m:mm
(fté/sect) . With free surface fluctuations
2.53 «- — — approximate, with free surface fluctuations
}
2.13 N ———— N0 free surface fluctuations
2, | \
1.79 - \
S
14
0.
-1
..NI
Fig. 3.19 Covariance Function of Horizontal Component of Acceleration at z = - = -5.59 ft.,

Mean Wind Speed = 40 mph n
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no<mm*m:mw xdo,#

H._u 1Tt
_N._u_|:;1/ with free surface fluctuations
10 // - — — approximate, with free surface fluctuations
no free surface fluctuations

\

-10.4

Fig. 3.20 Covariance Function of pressure at z = + ¢

=== Time {sec)

|
- . — —§. 9, 10. 1.

+5.59 ft., Mean Wind Speed = 40 mph
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na<msin

(1b

/ft

ce X1
%

10. 7

-

4
0
e With free surface fluctuations

approximate, with free surface fluctuations

/II no 3..2.._ surface fluctuations

\

Fig.

3.21

Covariance Function of Pressure at z = 8 ft., Mean Wind Speed = 40 mph

Time{Sec)
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Covariance X10 4

2,..4
(1b°/f¢") with free surface fluctuations
10 — - - 2approximate; with free surface fluctuations
9.801~ no free surface fluctuations

_qﬁsm (sec)

Fig. 3.22 Covarijance Function of Pressure at z = - o, = -5.59 ft., Mean Wind Speed = 40 mph
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Fig. 3.23 Spectrum of Horizontal Component of Velacity at z = + o,
+5.59 ft., Mean Wind Speed = 40 mph
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Spectrum (ftz/sec)

with free surface fluctuations

—~ — — Approximate, with free surface fluctuations

nd free surface fluctuations

n (rad/sec)
.225 .3 4 5 6 .7 .8

Fig. 3.24 Spectrum of Horizontal Component of Velocity at z = 0
Mean Wind Speed = 40 mph

L T 1] J '
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Spectrum (ft2/sec)

with free surface fluctuations

— — — approximate, with free surface fluctuations

- e ‘N0 free surface fluctuations

30 -

- n {rad/sec)

T T T T ¥ 1

.225 3 .4 .5 .6 .7 .8

Fig. 3.25 Spectrum of Horizontal Component of Velocity at z = - ¢
-5.59 ft., Mean Wind Speed = 40 mph n
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Fig. 3.26 Spectrum of Horizontal Component of Acceleration at z = +an=
+5.59 ft., Mean Wind Speed = 40 mph
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Spectrum x103(ft2/sec3)
wm— with free surface fluctuations

------- approximate, with free surface fluctuations
no free surface fluctuations

1004 o~

J

25+
0. ‘{_—-—“’ n (rad/sec)
) 1 I L} L 1
.225 .3 .4 .5 .6 g .8

Fig. 3.27 Spectrum of Horizontal Component of Acceleration at z = 0 ft,
Mean Wind Speed = 40 mph
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Fig. 3.28 Spectrum of Horizontal Component of Acceleration at z = -g =
-5.59 ft., Mean Wind Speed = 40 mph n
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Spectrum X10 3 (Ib2 sec/ftz)
with free surface fluctuations

— — - 2pproximate, with free surface fluctuations

40 -

no free surface fluctuations
—
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1 1 L] 1 ] L)
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Fig. 3.29 Spectrum of pressure at z = + ¢ = 45,59 ft., Mean Wind
Speed = 40 mph n
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Spectrum x 103(i|b2 sec/ftz)
with free surface fluctuations

— — _ approximate, with free surface fluctuations
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Fig. 3.30 Spectrum of Pressure at z = 0 ft., Mean Wind Speed = 40 mph
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Spectrum X10 °
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Fig. 3.31 Spectrum of Pressure at z = ~¢_ = -5.59 ft., Mean Wind
Speed = 40 mph n
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4. STATISTICAL PROPERTIES OF WAVE FORCE
The purpose.of this chapter is to develop expressions of the
probability density function, mean, variance, skewness, covariance function,
and spectrum of wave force in a random wave field, taking into account
the effects of free surface fluctuations pehnomenon.
Following the argument leading to Egs. (3.1), (3.2), and (3.3), the
wave force Y(z,t) per unit Tength of a vertical pile at point (0,z) and

time t, is, according to the Morison formula

Y(z,t) = Y(z,t)H{n(t)-2)

i

[CpV(z,8) [V{z,t) [ +CAlz ) IH(n(t)-2) (4.1)

1t

in which Cp = KjoD/2, Cy = KyomD?/4, D is pile diameter, and Ky and K,

are experimental coefficients. The values of D = 1 ft. and KD = 0.5,

KM =1.4, p = 1.99 slug/ft3 are chosen for this study.

4.1. PROBABILITY LAW OF WAVE FORCE
r
The probability density function f?(y) of wave force Y{z,t) is, by

the theorem of total probability

o0

fely) = [1 - a(b)Is(y) f['z Fn (¥ )dn (4.1.1)

in which an("') is the joint probability density function of random
variables ¥(z,t) and n{t). For convenience, the arguments of Y(z,t),
Y(z,t), n(t), V(z,t), and A(z,t) are all dropped.

To facilitate the determination of f?n(-,-), it is convenient to

introduce auxiliary random variables. That is

Y, = (Cy VIV| + CA) /G,
Y] = ﬂ/Un
Y -

5 = CoVIV/Cyo,-
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Thus, Eq. (4.1.1) can be written as-

-]

fyly) = [-0(0)] 6 () +[ fy oy, on)dn. (4.1.2)

b
The joint probability density function fY Y (-,+) is the marginal
ol

density function of f (-4*5-) given by
Y Y. Y ;
012
fy oy y) oy (Y yg Yo )dy | (4.1.3)
YOY1 1 | YOY}Y2 1 24772

in which f (+s+,+) is the joint probability density function of
YoYle

Yo. Y], and Y2 and can be written in terms of the joint probability

density function fVAn(-,-,') of V, A, and n. That is

: .
f (¥, ¥7,9,) = fua (Vs a, n) (4.1.4)
YoYTYZ 172 [ JT "VAq
J being the Jacobian function and is

2

2
J= (20l V1) / €y oy o

and the arguments v, a, and n in Eg. (4.1.4) are to be replaced by

v = sgn(yz) cv\’ 2a|y2|

a = aply-y,)

n e) y]

n
in which

_ 2
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Since V, A, and n are jointly Gaussian and the pairs of random
variables (V, A), and (A, n) are statistically independent (see Chapter
2), it may be verified that, after substitution of Eq. (4.1.4) into Eq.
(4.1.3),

fY Y (ys.Y-I) = 3/'220‘ i 1/2 [ ! EXD{- .._._.l............___.
o' 2(2m)>£(1-rpy (0)) - l¥,] 2(1-r%,(0))

(2aly,| - 2Sgn(yp)r  (0yy \BaTyp|  + y3 + (1-r £(0)) (y-y,)2))dy,.  (4.1.5)

Substituting Eq. (4.1.5) into £g. {4.1.1) and after rearranging

1 o
fyly) = [1-Q(b)1s(y) + -22’% ef oy fo Z(yz-y+a)q(( "nv(o) 20y, )

2n I, (]_rnvz(o)

oD

b+ 0))2
dy2+eqy§ 1 Z(y,*y+a)Q({ rnv() ay2

) dy,}, (4.1.6)
D) .ﬁ-rn 2 (0)
v
To verify that
1 =I‘ f?(y)dy =1, (4.1.7)

substitute Eq. (4.1.6) into the above integral

12 ™ o

P 3% f -ay[ 1

= [1-Q(b)] + =2 e { e —_ Iy, - y + a)
Nan —eo 0 @ 2

b-r_,{0)\/ 2ay a >
n 2)dy2 dy f eV f L Z(y,ty+a)
0

\j— Y2

b + "o D) 20y

V 1-r V(0)

2) dy, dy}.
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Since

f Z(.V'.Vz) =1

-

it follows that
I=1-Q(b) + L(5,0,r(0)) + L(B,0,-r_(0))

which {s equal to unity (Abramowitz, 1968).
From Eq. (4.1.6), it is seen that when the influence of the free

surface fluctuations diminishes (rnv(0)+0)7f?(y) approaches

12 o 1.2
5 - | =y, = 5 Y
fY(y) = c::./2n2 ezy [0 1 e ¢ 272 coslra(y.yz)dy2

{v.

as derived by Borgman {Borgman, 1967).
Numerical results of the probability density function f7(y) are
obtained for mean wind speed W = 40 mph and cylinder diameter D = 1 ft.

for z = o 0, -0, and shown in Figs. (4.]), (4.2) and (4.3) respectively.

4.2. MEAN, VARIANCE, AND SKEWNESS OF WAVE FORCE

The first three statistical moments of Y are derived herein using
three different methods to cross check the results. The variance and
skewness are then deduced from the statistical moments.

METHOD 1.
Using the probability density function of wave force,

o

E{Yj} =[ yj f?(y)dy, ji=1,2,3.

Performing the integration by parts, the following results can be obtained

without difficulty except that the algebra is lengthy for the third statisti-
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with free surfaceitluctuations
--------- no free surface fluctuations

v,

‘/\

) T * T T

k. 4. -3, -2, 1. 0. 1. 2. 3. 4. s

Fig. 4.1 Probability Density Function of Wave Force at
z=+09g =+5,59 ft., Mean Wind Speed = 40 mph, Diameter

n
of Cylinder = 1 ft.
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with free surface fluctuations
- no free surface fluctuations

Fig. 4.2 Probability Density Function of Wave Force at z = 0 ft.,
Mean Wind Speed = 40 mph, Diameter of Cylinder = 1 ft.
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f.(y) ————— with free surface fluctuations
| AP nc free surface fluctuations
.158
107!
1072
1073
3x1074 ' y

L

-5. -4, -3, -2. 1. 0. 1. 2. 5. i. 5.

Fig. 4.3 Probability Density Function of Wave Force at z = -y =
-5.59 ft., Mean Wind Speed = 40 mph, Diameter of CyYinder = 1 ft.
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cal moment.

\} 2
W o 2 2 {0V (0) b
BT} = ¢, ol Z

\l 2

? -r V(O)b
+2L(b,0,r ,(0)) + ri (0)bZ(b) (20(—L—=)-1)-Q(b)} (4.2.7)

01 - rﬁv(O)
2

E(VY} = (C5 of + 3¢5 02) Q. (b) + ¢ oﬁrﬁv(O) (6+r§v(0)_(b2-3))b2(b) (4.2.2)

)

and

\’ 2

3, _
E(Y’} = 3CD MO AC >
V 2n 1.2, (0)

2 -r y(0)b 36
+v2,(0)bZ(b) (zq(—-l%;*———) -1) - Q(b)} + Cloy(-15 Q(b) + 30L(b,0,r (0))
1-rc,(0)
nv

}+ 2L(b,0,r (0))

2r (0)\1-r2, (0) | 2r3 (oN1-v2, (0
+ "nv "y Z( b ) (3r:v(°) - zsrgv(o) +33) + rnV( ) r‘n’uf( )

\[EE— l-r:V(O) Var

5 2
2 0 \f]— 0
bzz( b ) (‘grﬁv(o) . ]4) . rnV( ) rnv( ) qu __“Jlﬁ___)+3grﬁv(0)
\JFPﬁV(O) \J2n | \51"'31\1(0)

(0)b
by gV (rﬁv(o)-srﬁv(0)+3)+10rjv(o)b3z(

bZ(
V1~riv(0) Vl-rﬁv(o)

b )

v1-riv(0)

(0)b 0)b
LIl (~2r2 (0)+3) + 2rS (0)2(b) Qv

q?-rEV(O) v1-rﬁv(0)

('”:V(O) + 3r2,(0) -3)-5r:V(0)b3Z(b) (2r§v(0)+3)-rﬁv(0)b52(b)}. (4.2.3)

)+15r§v(0)bz(b)
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METHOD 2.
In this section the moment generating function MY(S) of wave force

Y will be presented from which the statistical moments of wave force may

be deduced. The moment generating function of wave force is
My(s) = Ece®Ty.

Using Eq. (4.1.6), it may Be shown that

e -a[y2|+sy2 o b-sgn,(yz)rnv(ﬂ) 20.‘y2|)d

F( g
2yzn JEE;- 1-rn2(0) ’

v (4.2.8)

M?(s) 1-Q{b)+

The statistical moments of Y can be obtained from M?(s)

erdy - o (s)] i=1,2,3
dsd My(s) oo

but the algebra involved is quite Tengthy.

METHOD 3.
Using this method, the first three statistical moments are derived
without resort to the probability density function or the moment generating
function of wave force.

Taking the expected value of both sides of Eq. (4.1)
E{Y} = CoELVIVIH(n-2)1 + C ME(A H(n-2)}. (4.2.5)

The expectation in the second term on the right hand side of Eq.

(4.2.5) is zero since rnA(O) = E[A] = 0. The term

E(VIVIH(n-2)} = E{H(n-z) EfV|V]|n}} (4.2.6)
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in which E{V|V|[n} is the conditional expectation of V|V| given n. It

can be shown that

= 2(1-r2. (0D 2
ELV[V]|n} = cv(l-rnV(O) {(1+2°%) (20(a)-1)-0Z{2)} (4.2.7)
in which

@ = ry(0) G/ (1-r g (o)'/2.

Substituting Eq. (4.2.7) into Eq. {4.2.6) and evaluating the
resulting expected values by integration by parts, the result given by
Eq. (4.2.1) is retrieved. |

The second statistical moment of Y can be found in a similar manner

from Eq. (4.1)
w2y _ plppyd 2epal :
E{Y"} = CHE{V H{n-z)} + ZCDCME{V|V|AH(n—z)} + CyE{A H(n-z)}% (4.2.8)
The first expectation on the right hand side of the above equation is
4 . 4
E{V'H(n-2)} = E{H{n-2) E{V |n}}

in which (Papoulis, 1965}

eV} n) = of [1-r§v(0) (3 + 622 + a%).
Therefore
E(vH(g-2)} = gﬁ{riv(o) b (6 + rgv(D) (b2 - 3))Z(b) + 3Q(b)}. (4.2.9)

The second term on the right hand side of Eq. (4.2.8) vanishes because

E{V|V|AH{n-2)}= E{A} E{V[V]H(n-2)} = 0 (4.2.10)
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since A is zero mean. The third exbectation on the right hand side of

Eq. (4.2.8) can be written as

it

ECAPH(n-2)} = E(AZ} EfH(n-2)}

oiQ(b). | (4.2.11)
Substitution of Eqs. (4.2.9), (4.2.10), and (4.2.11) into

Eq. (4.2.8) yields E{Yz}as given by Eq. (4.2.2).
Similarly, the third statistical moment can also be obtained from

Eq. (4.1). That is

E(P) = COEASH(n-2)1 + 3coe,ECV AH(n-2)) + 3CCRELV VI A%H(n-2) 1+ EC

V2 [V]H(n-2)}. | (4.2.12)

The expectations in the first and second terms on the right hand side of

the above equation are zero because
E(A} = E{A’} = 0 and r.al0) = 0.
The expectation in the third term on the right hand side of Eq. (4.2.12) is

E(V|V|APH{n-2)} = ECAZYECV|V|H(n-2)} = oRELTY. (4.2.13)

The fourth term on the right'hand side of Eq. (4.2.12) can be written as
ECVO[V[H(n-2)} = ECH(n-z) EIV®|V||n}} | (4.2.14)
in which

6 -
mn
i=0
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and Bj are complicated functions of-n. Substituting Eq. (4.2.15) into

Eq. (4.2.14), performing the necessary integrations by parts, combining
the result with Eqs. (4.2.12), (4.2.13), and rearranging, E{V} of Eq.

{(4.2.3) is recovered. ‘

Examination of Eq. (4.2.1) indicates that the mean of wave-force is
non-zero, independent of time t and approaches zero as the point is fér
removed from the mean water level.

From Eq. (4.2.2), it is seen that

L oLew2, 2 2 .2 4 2

Tim E(Y} = Cy oy + 3Cp oy = E{Y }

r‘nV(O) + 0

the mean square value of Y obtained by Borgman wherein the effect of the
free surface fluctuation phenomenon was ignored (Borgman, 1967}. Also,
far above the mean water level, E{?Z} = 0 whereas the guantity E{Yz} diverges.

Numerical results of the mean E{Y}, standard deviation oy and skewness
Yy are obtained and compared with results obtained by Borgman (1967).
These quantities are shown in Fiqures (4.4) and {4.5) for mean wind speed
W = 40 mph and cylinder diameter D = 1 foot.

That the quantity Y has non-zero mean, and is skewed is readily
seen from these figures. The statistical properties of ¥ given in Figs.
(4.1) to (4.5) are seen to exhibit the same characteristics as those of
¥ and P,

4.3. COVARIANCE AND SPECTRUM OF WAVE FORCE

The covariance function of wave force can be represented as

. v v < _ 2
EC(Y;, - E{V3) (F, - E(V,})} = CUECAJAH(n - Z)H(ny-2)} + Coly(ELV V4]

2
AZH(N]‘Z)H(nz"z)} + E{A-Ivzlvz!H(n]'Z)H(nz"'Z)}) + CDE{V“IVZIV]Vle(n]-Z)
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Fig. 4.4 Mean and Standard Deviation of Wave Force, Mean Wind Speed
= 40 mph, Diameter of Cylinder = 1 ft.
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Fig. 4.5 Skewness of Wave Force, Mean Wind Speed = 40 mph, Diameter
of Cylinder = 1 ft.
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H(np=2)} - EZ(T) | | (4.3.1)

in which the subscripts 1 and 2 refer to time instants t and t + <,
respectively. The first expectation on the right hand side of the

above equation is, utilizing Eq. (3.3.6) and noting thét rnA(O)_- 0,

E{A'I AZH(H]'Z)H(ﬂz‘Z)} =

2 L2 V2 b ,, 2
UA{PAA(T)L(b,b,rnn(T)) + rnA(t)Z(mT::—uzz /J;;— 7-rnn(r)}. (4.3.2)
nmn

It can be shown that the terms enclosed in the parenthesis in the second
term on the right hand side of Eq. (4.3.1) cancel and do not contribute
to the covariance function. The fourth term on the right hand side of

Eq. (4.3.1) may be written as

EQVyV, [V1Vp [ H(ny=2)H(ny-2)} = EQVy [V |V, [V, [ECH(n =2 H(ny-2) [VyV, 1) {4.3.3)

in which

@

f Z(s)q(Aorlzls) s (4.3.4)
BB J]—r‘z(r)

E{H(n]-z)H(nz-z)|V1V2}

and

BB=(2-b,V,-byV,)/4;. (4.3.5)

r(c) = (R ()-biR (1) = bR \(0))/4]

is the conditional correlation coefficient of Ny and U gives V] and

Vo

by=(r y(0) = v u(x) ryy(=)) o /(1-vd (x))oy
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bp=(ryy (%) = Ty (0) vy (Do /012 (2))e,
and

by = (R(0) = bR (0) - bR ()2

Substituting Eq. (4.3.4) into Eq. (4.3.3), together with the result of
Eq. (4.3.2), Eg. (4.3.1) becomes

rﬁA(T)

) +
Va1 (o)

b 2 ” Yorryy(tlyy (°
z(_“__“:Z:f)} + Cn”ﬁ { y1|y]|2(y])f ¥2|Y2|Z(—g——!!—“*“J'BB Z(s)

\rer V1-r2, (r)

BT Y (Y orrY a1e L (22
EC(Y =BTy 1) (VpE(V,3)} = Guaptrpa(e)Libobor, (x

T+r (T)

Q( Aﬂ:rﬁili)ds dyZdy]‘EZ{?}. (4-3.6)
2
1-r°{<)
The covariance function of wave force ?1 and 72 is seen to be

independent of time t and is denoted by RV?{T).

The spectrum va{n) of Y is again the Fourier transfrom of va{T).

That is

Syy(n) = 5r R?T(T)e‘”fdr . (4.3.7)

It is noted that va(T) cannot be integrated in closed form and

must be performed numerically. Due to the multiple integrals involved,

it is desirable to simplify the exact formulation by its approximation.
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The approximate representation of RTV(T) can be found by Taylor's series

gxpansion of the function about rnn(r) = rnv(r) = rVV(T) = rnA(r) = rAA(r)

= 0 as previously done for the covariance function of U in Chapter 3.

Letting Ava(T) denote the approximate covariance function of wave
force, it can be shown that by retaining only the first twe terms in the
expansion,

26,6 r o (0)6.G
ARgw(t) = ChosQ®(b)ry,(x) + C2at{65+6,6, e 0+ 1% Tay? %o,

V12,000 100
, 2 (0) (006,46

royle) + (65 ——-ﬂg——-- 6,6, + ————E-——Q—l)rVV(T)} - 24y (4.3.8)
1-rnv(0) Ter V( }

in which -
n e . =r_y(0)b
(=¥

2
b n n ’ -rﬁU(O)

y(0) b > r.y(0)b
-Q +2r (0)\| (0) Z(b) Z{—=——=—)
\J_— " V12,00

-r_.(0)b r ,(0)b
& 1-r2(0) Z(b) £01-r ,(0) (1)) [o(=er) - Qi)

V1-rﬁv(0) 1-r§V(o)
2 r V(O)b
+2rnv(0)b\/ 1-rnv(0) zoll?;—-a}

l-rnv(O)

-r_,,(0)b
6=t (=2 b (3-12,(0) (1-2)) v (0) 7 (b) [Qlmt)

2 -
Van 1-r§v(0) ) " V1-r§v(0)
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y(0)b r.y(0)b
-Q(——-——-—)] +2r V(o) b\’1 -ry(0) Z(b) Z (—“-—-———-)
Vl-rnv(ﬂ) V] -r V(O)

The approximate spectrum AST—{n) is the Fourier transform of ARYY(T)

and is

rnv(0)60G1

3,2616;
ASyy(n) = (chV /a )s NOR ¢z oy { > ”
o) l-rnv(O) un(1—rnv(0))

2
(63-20ay (0%515p 4 Ty (00808y) 5 () + 2 q2(b)sy,(n) (4.3.9)

V(") + C

-%Vw) 14ﬁ¢0)

in which Snv(n) is the cross spectrum of n(t) and V(z,t) and is given by

Eq. {3.3.10) by replacing U by V.

Numerical results are shown in Figures (4.6) to (4.11). These
include the exact and approximate covariance functions and spectrum
together with the exact covariance function and spectrum of Borgman (1967).
For covariance functions, only the portions corresponding to >0 are
shown and the spectra are the one-sided spectra. The agreement between
the exact and approximate results are in general reasonably satisfactory,
although to a lesser extent as compared with the cases of V, A, and P
shown in Figures (3.14) to (3.31). Comparison of the present results
with those of Borgman {1967), however, indicates that the latter grossly

overestimates these quantities at and above the mean water level.
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250.] (1b2-sec/ £t2) - , 7N
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Fig. 4.9 Spectrum of Wave Force at z = +¢_ = + 5,59 ft., Mean Wind
Speed = 40 mph, Diameter of CyliRider = 1 ft.
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Fig. 4.10 Spectrum of Wave Force at z = 0. ft., Mean Wind Speed = 40 mph
Diameter of Cylinder = 1 ft,
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Fig., 4.11 Spectrum of Wave Force at z = -g = ~5.59 ft., Mean Wind
Speed = 40 mph, Diameter of Cylinder - 1 ft.
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5. SUMMARY AND CONCLUSIONS

In this investigation, the statistical properties of wave field

kinematics, pressure, and wave force in a random wave field are derived,

taking into account the free surface fluctuation phenomenon. Numerical

results are also obtained and presented.

The following concliusions arise out of this study:

1.

The horizontal component of velocity, acceleration, pressure,
and wave force are all non-Gaussian.

The horizontal component of velocity, pressure, and wave force
all possess non-zero mean and are skewed. The horizontal
component of acceleration, however, has zero mean and is not
skewed.

Far below the mean water level, the mean, variance, and skewness
of the horizontal component of velocity, acceleration, pressure,
and wave force approach past results. Far above the mean water
level, these guantities approach zero whereas past results
indicate that they grow indefinitely.

The covariance functions and spectra of the horizontal component
of velocity, acceleration, pressure, and wave force are derived
and approximate expressions are also obtained. The approximations
are seen to be adequate. The present covariance function and
spectrum converge to past results when the point is far below
the mean water level. Far above the mean water level, they

deviate drastically from past results.

It may therefore be concluded that the free surface fluctuation

phenomenon has a major influence on the statistical properties of the

quantities examined and must be considered.
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